Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Recognit ; 28(3): 166-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25652363

RESUMO

Human carbonic anhydrase (CA) isozyme VII is a cytosolic protein that is highly expressed in the cortex, hippocampus, and thalamus regions within mammalian brain, and expression disorders can cause epilepsy and several cases of malignant brain tumors. Therefore, CA VII is a potential antiepileptic and anticancer drug target. There are numerous sulfonamides that target CAs nonspecifically. It is important to understand the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex in order to design specific inhibitors against CA VII. Isothermal titration calorimetry and fluorescent thermal shift assay were used to characterize the intrinsic thermodynamic parameters of trifluoromethanesulfonamide and ethoxzolamide binding to CA VII. Binding experiments were carried out at various pH in different buffers in order to dissect linked protonation of the water molecule bound to the CA VII active site, deprotonation of the sulfonamide group of the inhibitor, and protonation-deprotonation of buffer. Dissection of all those contributions yielded the intrinsic thermodynamic parameters of binding, such as Gibbs free energy, binding enthalpy, entropy, and protein pKa value. Thermal shift assay was also used to determine CA VII stability at various pH.


Assuntos
Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacocinética , Sítios de Ligação , Calorimetria/métodos , Inibidores da Anidrase Carbônica/farmacocinética , Etoxzolamida/química , Etoxzolamida/farmacocinética , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Termodinâmica
2.
J Med Chem ; 57(22): 9435-46, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25358084

RESUMO

Human carbonic anhydrase IX (CA IX) is highly expressed in tumor tissues, and its selective inhibition provides a potential target for the treatment of numerous cancers. Development of potent, highly selective inhibitors against this target remains an unmet need in anticancer therapeutics. A series of fluorinated benzenesulfonamides with substituents on the benzene ring was designed and synthesized. Several of these exhibited a highly potent and selective inhibition profile against CA IX. Three fluorine atoms significantly increased the affinity by withdrawing electrons and lowering the pKa of the benzenesulfonamide group. The bulky ortho substituents, such as cyclooctyl or even cyclododecyl groups, fit into the hydrophobic pocket in the active site of CA IX but not CA II, as shown by the compound's co-crystal structure with chimeric CA IX. The strongest inhibitor of recombinant human CA IX's catalytic domain in human cells achieved an affinity of 50 pM. However, the high affinity diminished the selectivity. The most selective compound for CA IX exhibited 10 nM affinity. The compound that showed the best balance between affinity and selectivity bound with 1 nM affinity. The inhibitors described in this work provide the basis for novel anticancer therapeutics targeting CA IX.


Assuntos
Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Desenho de Fármacos , Benzeno/química , Calorimetria , Dióxido de Carbono/química , Anidrase Carbônica IV/química , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Cinética , Neoplasias/tratamento farmacológico , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Sulfonamidas/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA