Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 242: 116024, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387126

RESUMO

Importance of cleaning validation in the pharmaceutical industry cannot be overstated. It is essential for preventing cross-contamination, ensuring product quality & safety, and upholding regulatory standards. The present study involved development of an effective cleaning method for five selected kinase inhibitors binimetinib (BMT), selumetinib (SMT), brigatinib (BGT), capmatinib (CPT), and baricitinib (BRT). For checking the effectiveness of the developed cleaning technique, a sensitive and specific RP-HPLC based analytical method employing a diode array detector has been established to quantitate drug residue on glass and stainless steel surfaces. A reproducible swab sampling protocol utilizing TX714A Alpha swabs wetted with an extracting solvent has been developed to collect representative samples from both surfaces. Chromatographic separation of selected kinase inhibitors was achieved in gradient mode using an Agilent Zorbax eclipsed C18 column with acetonitrile and 10 mM ammonium formate as the mobile phase. The analytes were chromatographically separated in a 12 min run time. The mean swab recovery for each drug from glass and stainless steel surfaces exceeded 90%. Cleaning with IPA (70%) and acetone (70%) effectively removed residues for all five drugs. A solution comprising 10 mM SDS with 20% IPA demonstrated good efficacy in cleaning residues of BGT, BRT, and CPT, but exhibited lower efficacy for SMT and BMT.


Assuntos
Indústria Farmacêutica , Aço Inoxidável , Cromatografia Líquida de Alta Pressão/métodos , Solventes , Acetona
2.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188906, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172652

RESUMO

Low intracellular bioavailability, off-site toxicities, and multi drug resistance (MDR) are the major constraints involved in cancer chemotherapy. Many anticancer molecules fail to become a good lead in drug discovery because of their poor site-specific bioavailability. Concentration of a molecule at target sites is largely varied because of the wavering expression of transporters. Recent anticancer drug discovery strategies are paying high attention to enhance target site bioavailability by modulating drug transporters. The level of genetic expression of transporters is an important determinant to understand their ability to facilitate drug transport across the cellular membrane. Solid carrier (SLC) transporters are the major influx transporters involved in the transportation of most anti-cancer drugs. In contrast, ATP-binding cassette (ABC) superfamily is the most studied class of efflux transporters concerning cancer and is significantly involved in efflux of chemotherapeutics resulting in MDR. Balancing SLC and ABC transporters is essential to avoid therapeutic failure and minimize MDR in chemotherapy. Unfortunately, comprehensive literature on the possible approaches of tailoring site-specific bioavailability of anticancer drugs through transporter modulation is not available till date. This review critically discussed the role of different specific transporter proteins in deciding the intracellular bioavailability of anticancer molecules. Different strategies for reversal of MDR in chemotherapy by incorporation of chemosensitizers have been proposed in this review. Targeted strategies for administration of the chemotherapeutics to the intracellular site of action through clinically relevant transporters employing newer nanotechnology-based formulation platforms have been explained. The discussion embedded in this review is timely considering the current need of addressing the ambiguity observed in pharmacokinetic and clinical outcomes of the chemotherapeutics in anti-cancer treatment regimens.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Disponibilidade Biológica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA