Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Mol Neurosci ; 72(11): 2188-2206, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36370303

RESUMO

With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation-a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression-in the case of GBM-can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Material Particulado/toxicidade
2.
Mol Neurobiol ; 59(5): 2822-2837, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35212938

RESUMO

Glioblastoma multiforme is the most common, highly aggressive malignant brain tumor which is marked by highest inter- and intra-tumoral heterogeneity. Despite, immunotherapy, and combination therapies developed; the clinical trials often result into large number of failures. Often cancer cells are known to communicate with surrounding cells in tumor microenvironment (TME). Extracellular vesicles (EVs) consisting of diverse cargo mediates this intercellular communication and is believed to modulate the immune function against GBM. Tumor-associated microglia (TAM), though being the resident innate immune cell of CNS, is known to attain pro-tumorigenic M2 phenotype, and this immunomodulation is aided by extracellular vesicle-mediated transfer of oncogenic, immunomodulatory molecules. Besides, oncogenic proteins, long non-coding RNAs (lncRNAs), are believed to carry oncogenic potential, and therefore, understanding the mechanism leading to microglial dysregulation mediated by GBM-derived extracellular vesicle (GDEV) lncRNAs becomes crucial. This review focuses on current understanding of role of GDEV and lncRNA in microglial dysfunction and its potential as a therapeutic target.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , RNA Longo não Codificante , Neoplasias Encefálicas/metabolismo , Comunicação Celular , Vesículas Extracelulares/metabolismo , Glioblastoma/patologia , Humanos , Microglia/metabolismo , RNA Longo não Codificante/metabolismo , Microambiente Tumoral
3.
Biochim Biophys Acta Gen Subj ; 1866(3): 130065, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34902452

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is one of the most fatal tumors of the central nervous system with high rate of disease progression, diagnosis, prognosis and low survival rate. Therapeutic approaches that relied on surgical resection and chemotherapy have been unable to curb the disease progression and subsequently leading to increase in incidences of GBM reoccurrence. SCOPE OF THE REVIEW: In the recent times, membrane-bound extracellular vesicles (EVs) have been observed as one of the key reasons for the uncontrolled growth of GBM. EVs are shown to have the potential to contribute to the disease progression via mediating drug resistance and epithelial-mesenchymal transition. The GBM-derived EVs (GDEVs) with its cargo contents act as the biological trojan horse and lead to disease progression after being received by the recipient target cells. This review article highlights the biophysical, biochemical properties of EVs, its cargo contents and its potential role in the growth and progression of GBM by altering tumour microenvironment. MAJOR CONCLUSIONS: EVs are being explored for serving as novel disease biomarkers in a variety of cancer types such as adenocarcinoma, pancreatic cancer, color rectal cancer, gliomas and glioblastomas. Improvement in the EV isolation protocols, polymer-based separation techniques and transcriptomics, have made EVs a key diagnostic marker to unravel the progression and early GBM diagnosis. GDEVs role in tumour progression is under extensive investigations. GENERAL SIGNIFICANCE: Attempts have been also made to discuss and compare the usage of EVs as potential therapeutic targets versus existing therapies targeting drug resistance and EMT.


Assuntos
Transição Epitelial-Mesenquimal
4.
Toxicol Lett ; 326: 23-30, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32109534

RESUMO

Simultaneous detection of autophagy and apoptosis is important in drug discovery and signaling studies. Here we report, a real-time reporter cell line for the simultaneous detection of apoptosis and autophagy at single-cell level employing stable integration of two fluorescent protein reporters of apoptosis and autophagy. Cells stably expressing EGFP-LC3 fusion was developed initially as a marker for autophagy and subsequently stably expressed with inter-mitochondrial membrane protein SMAC with RFP fusion to detect mitochondrial permeabilization event of apoptosis. The cell lines faithfully reported the LC3 punctae formation and release of intermembrane proteins in response to diverse apoptotic and autophagic stimuli.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Genes Reporter/efeitos dos fármacos , Proteínas de Fluorescência Verde/efeitos dos fármacos , Células HeLa/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/fisiologia , Linhagem Celular Tumoral/fisiologia , Genes Reporter/fisiologia , Proteínas de Fluorescência Verde/fisiologia , Células HeLa/fisiologia , Humanos
5.
Redox Biol ; 20: 379-389, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30408753

RESUMO

Most toxic compounds including cancer drugs target mitochondria culminating in its permeabilization. Cancer drug-screening and toxicological testing of compounds require cost-effective and sensitive high-throughput methods to detect mitochondrial damage. Real-time methods for detection of mitochondrial damage are less toxic, allow kinetic measurements with good spatial resolution and are preferred over end-stage assays. Cancer cell lines stably expressing genetically encoded mitochondrial-targeted redox-GFP2 (mt-roGFP) were developed and validated for its suitability as a mitochondrial damage sensor. Diverse imaging platforms and flow-cytometry were utilized for ratiometric analysis of redox changes with known toxic and cancer drugs. Key events of cell death and mitochondrial damage were studied at single-cell level coupled with mt-roGFP. Cells stably expressing mt-roGFP and H2B-mCherry were developed for high-throughput screening (HTS) application. Most cancer drugs while inducing mitochondrial permeabilization trigger mitochondrial-oxidation that can be detected at single-cell level with mt-roGFP. The image-based assay using mt-roGFP outperformed other quantitative methods of apoptosis in ease of screening. Incorporation of H2B-mCherry ensures accurate and complete automated segmentation with excellent Z value. The results substantiate that most cancer drugs and known plant-derived antioxidants trigger cell-death through mitochondrial redox alterations with pronounced ratio change in the mt-roGFP probe. Real-time analysis of mitochondrial oxidation and mitochondrial permeabilization reveal a biphasic ratio change in dying cells, with an initial redox surge before mitochondrial permeabilization followed by a drastic increase in ratio after complete mitochondrial permeabilization. Overall, the results prove that mitochondrial oxidation is a reliable indicator of mitochondrial damage, which can be readily determined in live cells using mt-roGFP employing diverse imaging techniques. The assay described is highly sensitive, easy to adapt to HTS platforms and is a valuable resource for identifying cytotoxic agents that target mitochondria and also for dissecting cell signaling events relevant to redox biology.


Assuntos
Descoberta de Drogas , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ensaios de Triagem em Larga Escala , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citocromos c/metabolismo , Genes Reporter , Humanos , Microscopia Confocal , Imagem Molecular , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio , Proteína X Associada a bcl-2/metabolismo
6.
J Biochem Mol Toxicol ; 33(2): e22242, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30368985

RESUMO

The endoplasmic reticulum (ER) plays an important role in the regulation and maintenance of cellular homeostasis. However, unresolved ER stress leads to deleterious effects by inducing the accumulation of unfolded proteins in the cell. Here we have demonstrated the protective aspects of quercetin against radiation-induced ER stress and against inflammation in primary cultured dorsal root ganglion (DRG) neurons. The mature DRG neurons were pretreated with different concentrations of quercetin (5-100 µM) for 24 hours before 2 Gy gamma radiation exposure and then subjected to a cytotoxicity assay, quantitative real-time polymerase chain reaction and Western blot analysis. The results showed that quercetin decreased the expression of BiP and C/EBP-homologous protein, the ER stress marker genes along with downregulation of tumor necrosis factor-α, JNK in irradiated DRG neurons. Furthermore, quercetin pretreatment significantly increased the cytoskeletal protein Tuj1 and the neurotrophin brain-derived neurotrophic factor in the neuron. These results indicate that quercetin plays a neuroprotective role against radiation-mediated ER stress and inflammatory responses.


Assuntos
Estresse do Retículo Endoplasmático , Raios gama/efeitos adversos , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Quercetina/farmacologia , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos da radiação , Gânglios Espinais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/patologia
7.
J Mol Neurosci ; 65(3): 343-350, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29992497

RESUMO

MeCP2 (methyl-CpG binding protein 2), an epigenetic regulator, has been shown to regulate the function of neurons and glial cells. Our previous study has demonstrated that MeCP2 repress the myelin gene expression in rat oligodendrocytes but whether MeCP2 bind to myelin gene MBP and PLP is not yet known. Besides oligodendrocytes, C6 glioma also expresses myelin genes and could be used as a model system to study myelin gene expression. In the present study, we determined that MeCP2 directly bind to MBP, PLP, and BDNF promoter in oligodendrocytes. Further, it was found that MeCP2 differentially regulates the myelin gene expression in oligodendrocytes and C6 glioma. In contrast to oligodendrocytes, MeCP2 does not bind to promoter region of MBP and PLP in C6 glioma suggest that MeCP2 differentially regulates the gene expression in different cell types.


Assuntos
Glioma/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Proteína 2 de Ligação a Metil-CpG/genética , Bainha de Mielina/genética , Regiões Promotoras Genéticas , Ligação Proteica , Ratos
8.
Neurosci Lett ; 674: 42-48, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29540297

RESUMO

MethylCpG binding protein-2 (MeCP2) is an epigenetic regulator and essential for brain development. MeCP2 mutations are associated with a spectrum of neuro-developmental disorders that vary depending on the patient gender, most notably Rett Syndrome. MeCP2 is essential for normal neuronal maturation, and glial cell function in the brain. Besides, its role in neurodevelopmental disorders, MeCP2 is involved in many cancers such as breast, colorectal, lung, liver, and prostate cancer. Glioma is the most lethal form of brain cancer. Studies have shown that dysfunctional epigenetic regulation plays a crucial role in glioma progression. Further, previous studies have suggested a role for MeCP2 in glioma pathogenesis. In this study, we show that MeCP2 may play a critical role in the suppression of glioma progression. Stable overexpression of MeCP2in C6 glioma cells inhibits proliferation, migration, invasion, and adhesion. Moreover, MeCP2 overexpression inhibits pERKand BDNF expression while inducing GFAP expression in C6 glioma. These findings suggest that MeCP2 may play a crucial role in suppression of glioma progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Expressão Gênica , Glioma/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Epigênese Genética , Proteína Glial Fibrilar Ácida/metabolismo , Glioma/genética , Glioma/patologia , Invasividade Neoplásica , Ratos
9.
Metab Brain Dis ; 33(3): 855-868, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29429012

RESUMO

Ionizing radiation induces various pathophysiological conditions by altering central nervous system (CNS) homeostasis, leading to neurodegenerative diseases. However, the potential effect of ionizing radiation response on cellular physiology in glial cells is unclear. In the present study, micronucleus test, comet assay, and RT-PCR were performed to investigate the potential effect of gamma radiation in cultured oligodendrocytes and astrocytes with respect to genomic instability, Endoplasmic Reticulum (ER) stress, and inflammation. Further, we studied the effect of alteration in ER stress specific gene expression in cortex post whole body radiation in mice. Results showed that exposure of gamma radiation of 2Gy in-vitro cultured astrocytes and oligodendrocytes and 7Gy in-vivo induced ER stress and Inflammation along with profuse DNA damage and Chromosomal abnormality. Additionally, we observed downregulation of myelin basic protein levels in cultured oligodendrocytes exposed to radiation. The present data suggests that ER stress and pro inflammatory cytokines serve as the major players in inducing glial cell dysfunction post gamma irradiation along with induction of genomic instability. Taken together, these results indicate that ER stress, DNA damage, and inflammatory pathways may be critical events leading to glial cell dysfunction and subsequent cell death following exposure to ionizing radiation.


Assuntos
Astrócitos/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Instabilidade Genômica/genética , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Animais , Morte Celular/fisiologia , Células Cultivadas , Sistema Nervoso Central/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Camundongos
10.
Eur J Cell Biol ; 97(1): 1-14, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29092745

RESUMO

The selective autophagic removal of mitochondria called mitophagy is an essential physiological signaling for clearing damaged mitochondria and thus maintains the functional integrity of mitochondria and cells. Defective mitophagy is implicated in several diseases, placing mitophagy as a target for drug development. The identification of key regulators of mitophagy as well as chemical modulators of mitophagy requires sensitive and reliable quantitative approaches. Since mitophagy is a rapidly progressing event and sub-microscopic in nature, live cell image-based detection tools with high spatial and temporal resolution is preferred over end-stage assays. We describe two approaches for measuring mitophagy in mammalian cells using stable cells expressing EGFP-LC3 - Mito-DsRed to mark early phase of mitophagy and Mitochondria-EGFP - LAMP1-RFP stable cells for late events of mitophagy. Both the assays showed good spatial and temporal resolution in wide-field, confocal and super-resolution microscopy with high-throughput adaptable capability. A limited compound screening allowed us to identify a few new mitophagy inducers. Compared to the current mitophagy tools, mito-Keima or mito-QC, the assay described here determines the direct delivery of mitochondrial components to the lysosome in real time mode with accurate quantification if monoclonal cells expressing a homogenous level of both probes are established. Since the assay described here employs real-time imaging approach in a high-throughput mode, the platform can be used both for siRNA screening or compound screening to identify key regulators of mitophagy at decisive stages.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/genética , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Microscopia Confocal , Mitocôndrias/ultraestrutura , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Células Tumorais Cultivadas
11.
Cytotechnology ; 70(1): 465-477, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29143227

RESUMO

Aberrant PDGFR (Platelet derived growth factor receptor) signalling in brain tumors and gliomas is one of the primary cause of tumor progression. PDGFR stimulation by its ligand and the role of its downstream mediators such as extracellular regulated kinases (ERK1/2), PI3K and ROCK pathways have not been thoroughly investigated. The present study sought to investigate the role of PDGF receptor signalling inhibition on suppression of rat C6 glioma growth and migration. Treatment of C6 cells with PDGFR inhibitor, AG1295 caused a significant reduction in migration and proliferation by regulating the ERK and ROCK signalling. Subsequently, PDGFR blocking was demonstrated to regulate cytoskeleton reorganization by modulating the Actin-pMLC reorganization and pERK-FAK-Paxillin complex formation which may further regulate the C6 glioma migration. Further, other malignant behaviour of C6 glioma such as anchorage independent growth, adhesion, invasion and sphere forming abilities were found to be impaired by PDGFR blocking. PDGFR inhibition further regulates the C6 glioma tumor behaviour by inducing gene expression of GFAP, BDNF, and MECP2 and down regulating FAK expression. In conclusion, our data elucidate novel mechanisms involve in PDGFR inhibition mediated inhibition of C6 glioma growth and migration which can be a future potential target for the treatment of glioma.

12.
Mol Neurobiol ; 54(9): 6697-6722, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27744571

RESUMO

Excitotoxicty, a key pathogenic event is characteristic of the onset and development of neurodegeneration. The glutamatergic neurotransmission mediated through different glutamate receptor subtypes plays a pivotal role in the onset of excitotoxicity. The role of NMDA receptor (NMDAR), a glutamate receptor subtype, has been well established in the excitotoxicity pathogenesis. NMDAR overactivation triggers excessive calcium influx resulting in excitotoxic neuronal cell death. In the present study, a series of benzazepine derivatives, with the core structure of 3-methyltetrahydro-3H-benzazepin-2-one, were synthesised in our laboratory and their NMDAR antagonist activity was determined against NMDA-induced excitotoxicity using SH-SY5Y cells. In order to assess the multi-target-directed potential of the synthesised compounds, Aß1-42 aggregation inhibitory activity of the most potent benzazepines was evaluated using thioflavin T (ThT) and Congo red (CR) binding assays as Aß also imparts toxicity, at least in part, through NMDAR overactivation. Furthermore, neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic activities of the two potential test compounds (7 and 14) were evaluated using primary rat hippocampal neuronal culture against Aß1-42-induced toxicity. Finally, in vivo neuroprotective potential of 7 and 14 was assessed using intracerebroventricular (ICV) rat model of Aß1-42-induced toxicity. All of the synthesised benzazepines have shown significant neuroprotection against NMDA-induced excitotoxicity. The most potent compound (14) showed relatively higher affinity for the glycine binding site as compared with the glutamate binding site of NMDAR in the molecular docking studies. 7 and 14 have been shown experimentally to abrogate Aß1-42 aggregation efficiently. Additionally, 7 and 14 showed significant neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic properties in different in vitro and in vivo experimental models. Finally, 7 and 14 attenuated Aß1-42-induced tau phosphorylation by abrogating activation of tau kinases, i.e. MAPK and GSK-3ß. Thus, the results revealed multi-target-directed potential of some of the synthesised novel benzazepines against excitotoxicity.


Assuntos
Benzazepinas/administração & dosagem , Benzazepinas/síntese química , Sistemas de Liberação de Medicamentos/métodos , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/síntese química , Animais , Benzazepinas/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Antagonistas de Aminoácidos Excitatórios/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Ratos , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
13.
J Med Chem ; 59(12): 5823-46, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27253679

RESUMO

A novel series of hybrid molecules were designed and synthesized by fusing the pharmacophoric features of cholinesterase inhibitor donepezil and diarylthiazole as potential multitarget-directed ligands for the treatment of Alzheimer's disease (AD). The compounds showed significant in vitro anticholinesterase (anti-ChE) activity, the most potent compound (44) among them showing the highest activity (IC50 value of 0.30 ± 0.01 µM) for AChE and (1.84 ± 0.03 µM) for BuChE. Compound 44 showed mixed inhibition of AChE in the enzyme kinetic studies. Some compounds exhibited moderate to high inhibition of AChE-induced Aß1-42 aggregation and noticeable in vitro antioxidant and antiapoptotic properties. Compound 44 showed significant in vivo anti-ChE and antioxidant activities. Furthermore, compound 44 demonstrated in vivo neuroprotection by decreasing Aß1-42-induced toxicity by attenuating abnormal levels of Aß1-42, p-Tau, cleaved caspase-3, and cleaved PARP proteins. Compound 44 exhibited good oral absorption and was well tolerated up to 2000 mg/kg, po, dose without showing toxic effects.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Piperidinas/farmacologia , Tiazóis/farmacologia , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/síntese química , Antioxidantes/química , Butirilcolinesterase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Masculino , Camundongos , Estrutura Molecular , Piperidinas/química , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Células Tumorais Cultivadas
14.
Bioorg Chem ; 61: 7-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26042530

RESUMO

This article describes discovery of a novel and new class of cholinesterase inhibitors as potential therapeutics for Alzheimer's disease. A series of novel isoalloxazine derivatives were synthesized and biologically evaluated for their potential inhibitory outcome for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds exhibited high activity against both the enzymes AChE as well as BuChE. Of the synthesized compounds, the most potent isoalloxazine derivatives (7m and 7q) showed IC50 values of 4.72 µM and 5.22 µM respectively against AChE; and, 6.98 µM and 5.29 µM respectively against BuChE. These two compounds were further evaluated for their anti-aggregatory activity for ß-amyloid (Aß) in presence and absence of AChE by performing Thioflavin-T (ThT) assay and Congo red (CR) binding assay. In order to evaluate cytotoxic profile of these two potential compounds, cell viability assay of SH-SY5Y human neuroblastoma cells was performed. Further, to understand the binding behavior of these two compounds with AChE and BuChE enzymes, docking studies have been reported.


Assuntos
Inibidores da Colinesterase/síntese química , Flavinas/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/toxicidade , Avaliação Pré-Clínica de Medicamentos , Flavinas/uso terapêutico , Flavinas/toxicidade , Humanos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
15.
Biomed Res Int ; 2014: 460251, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25210711

RESUMO

Changes in lifestyle lead to insulin resistance (IR) in females ultimately predisposing them towards infertility. In addition, cadmium (Cd), an environmental endocrine disruptor, is reported for detrimental effects on granulosa cells, thus leading to ovarian dysfunction. A combination of these factors, lifestyle and environment, seems to play a role in etiology of idiopathic infertility that accounts for 50% amongst the total infertility cases. To address this issue, we made an attempt to investigate the extent of Cd impact on insulin-resistant (IR) granulosa cells. We exposed adult female Charles Foster rats to dexamethasone and confirmed IR condition by fasting insulin resistance index (FIRI). On treatment of IR rats with Cd, the preliminary studies demonstrated prolonged estrous cyclicity, decrease in serum estradiol concentrations, abnormal histology of ovary, and increased granulosa cell death. Further gene and protein expression studies of steroidogenic acute regulatory (StAR) protein, 17ß-hydroxysteroid dehydrogenase (17ß-HSD), and cytochrome P450 aromatase (CYP19A1) were performed. Protein expression studies demonstrated significant decrease in treated groups when compared with control. Study revealed that, in spite of the molecular parameters being affected at varied level, overall ovarian physiology is maximally affected in IR and Cd coexposed group, thus mimicking the condition similar to those prevailing in infertile females.


Assuntos
Cádmio/toxicidade , Fertilidade/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Insulina/metabolismo , Adulto , Animais , Dexametasona/toxicidade , Estradiol/metabolismo , Ciclo Estral/efeitos dos fármacos , Feminino , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/patologia , Humanos , Resistência à Insulina/genética , Ovário/efeitos dos fármacos , Fosfoproteínas/metabolismo , Progesterona/metabolismo , Ratos
16.
Apoptosis ; 19(1): 269-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24220853

RESUMO

Despite the use of new generation target specific drugs or combination treatments, drug-resistance caused by defective apoptosis signaling remains a major challenge in cancer treatment. A common apoptotic defect in drug-resistant tumor is the failure of cancer cells to undergo Bax/Bak-dependent mitochondrial permeabilization due to impaired signaling of Bcl-2 family proteins. Therefore, Bax and Bak-independent caspase-activating compounds appear to be effective in killing such tumor cells. An image-based cellular platform of caspase sensors in Bax and Bak deficient background allowed us to identify several potential Bax/Bak-independent caspase-activating compounds from a limited high-throughput compound screening. FRET-based caspase sensor probe targeted at the nucleus enabled accurate and automated segmentation, yielding a Z-value of 0.72. Some of the positive hits showed promising activity against drug-resistant human cancer cells expressing high levels of Bcl-2 or Bcl-xL. Using this approach, we describe thiolutin, CD437 and TPEN as the most potentially valuable drug candidates for addressing drug-resistance caused by aberrant expression of Bcl-2 family proteins in tumor cells. The screen also enables the quantification of multiparameter apoptotic events along with caspase activation in HTS manner in live mode, allowing characterization of non-classical apoptosis signaling.


Assuntos
Antineoplásicos/farmacologia , Caspases/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
17.
Biol Trace Elem Res ; 152(3): 316-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23479318

RESUMO

The association of cadmium (Cd) and lead (Pb) in the pathophysiology and progression of benign prostate hyperplasia (BPH) has been evaluated in an epidemiological study with 116 BPH patients of the western part of India. The prostatic acid phosphatase activity, prostate-specific antigen, maximum urinary flow rate (Q max), and redox status of BPH patients were correlated with Cd and Pb contents. Additionally, patients were also separated on the basis of their age, genetic lineage, and additive habits and correlated with the Cd, Pb, and Q max levels. Our results suggest that the accumulation of toxic metals in prostate tissue has a significant positive correlation with the pathogenesis of BPH. Cd and Pb exert their effects through altered antioxidant defense mechanisms, ultimately leading to increased BPH severity. Progression of the pathogenesis also depends on other factors such as additive habits, genetic lineage, and age of the patients.


Assuntos
Antioxidantes/metabolismo , Cádmio/análise , Poluentes Ambientais/análise , Chumbo/análise , Próstata/metabolismo , Hiperplasia Prostática/epidemiologia , Hiperplasia Prostática/etiologia , Cádmio/farmacocinética , Cádmio/toxicidade , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Humanos , Incidência , Índia/epidemiologia , Chumbo/farmacocinética , Chumbo/toxicidade , Masculino , Próstata/patologia , Próstata/cirurgia , Antígeno Prostático Específico/sangue , Hiperplasia Prostática/patologia , Hiperplasia Prostática/cirurgia , Espectrofotometria Atômica , Ressecção Transuretral da Próstata
18.
Tissue Eng Part C Methods ; 18(11): 890-902, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22889128

RESUMO

Endothelial progenitor cells (EPCs) play a significant role in multiple biological processes such as vascular homeostasis, regeneration, and tumor angiogenesis. This makes them a promising cell of choice for studying a variety of biological processes, toxicity assays, biomaterial-cell interaction studies, as well as in tissue-engineering applications. In this study, we report the generation of two clones of SV40-immortalized EPCs from umbilical cord blood. These cells retained most of the functional features of mature endothelial cells and showed no indication of senescence after repeated culture for more than 240 days. Extensive functional characterization of the immortalized cells by western blot, flow cytometry, and immunofluorescence studies substantiated that these cells retained their ability to synthesize nitric oxide, von Willebrand factor, P-Selectin etc. These cells achieved unlimited proliferation potential subsequent to inactivation of the cyclin-dependent kinase inhibitor p21, but failed to form colonies on soft agar. We also show their enhanced growth and survival on vascular biomaterials compared to parental cultures in late population doubling. These immortalized EPCs can be used as a cellular model system for studying the biology of these cells, gene manipulation experiments, cell-biomaterial interactions, as well as a variety of tissue-engineering applications.


Assuntos
Prótese Vascular , Células Endoteliais/citologia , Sangue Fetal/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Antígenos Transformantes de Poliomavirus/metabolismo , Adesão Celular , Ciclo Celular , Linhagem Celular Transformada , Proliferação de Células , Separação Celular , Senescência Celular , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Cinética , Células-Tronco/metabolismo
19.
Exp Neurol ; 236(2): 259-67, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22554866

RESUMO

Cell migration is an indispensable aspect of tissue patterning during embryonic development. Oligodendrocytes, the myelinating cells of the central nervous system, migrate significantly during development of the brain. Several growth factors have been identified as being critical regulators of oligodendrocyte progenitor migration, including platelet derived growth factor-A (PDGFA), and fibroblast growth factor-2 (FGF2). Further, the chemokine CXCL1 has been shown to play a critical role in regulating the dispersal of oligodendrocyte progenitors during development, although the mechanisms underlying this regulation are unknown. Previous studies have also shown that calcium flux is required for oligodendrocyte progenitor migration. CXCL1 induces calcium flux in cells; therefore, we hypothesized that CXCL1 inhibition of oligodendrocyte progenitor migration is regulated via changes in intracellular calcium flux. The current study shows that CXCL1 inhibition of oligodendrocyte progenitor migration is independent of calcium signaling. Further, we show that CXCL1 inhibition of oligodendrocyte progenitor migration is specific to PDGFA induced migration. Finally, we show that CXCL1 inhibition of oligodendrocyte progenitor migration is independent of activation of the cell cycle. Our results provide intriguing results relevant to specific aspects of patterning of white matter tracts in the central nervous system, and may further the understanding of tissue remodeling seen during disease-related processes.


Assuntos
Sinalização do Cálcio/fisiologia , Inibição de Migração Celular/fisiologia , Quimiocina CXCL1/fisiologia , Oligodendroglia/fisiologia , Células-Tronco/fisiologia , Animais , Animais Recém-Nascidos , Cálcio/química , Cálcio/metabolismo , Cálcio/fisiologia , Células Cultivadas , Líquido Intracelular/metabolismo , Líquido Intracelular/fisiologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Fator de Crescimento Derivado de Plaquetas/fisiologia , Ratos , Células-Tronco/citologia , Células-Tronco/metabolismo
20.
J Biochem Mol Toxicol ; 24(6): 384-94, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21182167

RESUMO

Few studies have characterized the molecular and biochemical mechanisms involved in ovarian steroidogenesis disruption by heavy metals, such as lead and cadmium coexposure, on F1 generation offspring. In this study, adult pregnant female rats were treated subcutaneously (0.05 mg/kg of body weight per day) with sodium acetate (control), lead acetate, and cadmium acetate separately and in combination throughout gestational and lactational period, and all animals from each of the experimental groups were sacrificed by decapitation on postnatal day 56 for various assays. The activities of key steroidogenic enzymes (17ß-hydroxysteroid dehydrogenase and 3ß-hydroxysteroid dehydrogenase) decreased in all the metal-treated groups. But the most significant decrease in the activities was observed in the cadmium-treated group, whereas the combined exposure group showed an intermediate effect. Serum estradiol and progesterone levels were also significantly altered in all the metal-treated groups, with the cadmium-exposed group showing maximum reductions as compared with the control group. The inhibitory effects of lead and cadmium on ovarian steroidogenic acute regulatory protein (StAR) mRNA levels along with CYP11 mRNA levels were also observed. Ovarian cholesterol content measured also showed significant depletion in all the metal-treated groups, with the cadmium-exposed group showing the maximum depletion. The activities of ovarian enzymatic antioxidants, such as superoxide dismutase, catalase, and glutathione peroxidase, were all significantly diminished along with significant depletion in nonenzymatic antioxidants. Lipid peroxidation was elevated significantly in all the metal-treated groups. In conclusion, lead and cadmium inhibit ovarian steroidogenesis by downregulating StAR gene expression along with inhibiting activities of steroidogenic enzymes and antioxidant system.


Assuntos
Cádmio/toxicidade , Hormônios Esteroides Gonadais/biossíntese , Chumbo/toxicidade , Exposição Materna , Ovário/efeitos dos fármacos , Animais , Regulação para Baixo , Feminino , Lactação , Masculino , Ovário/metabolismo , Estresse Oxidativo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA