Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(10): e3002827, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39361708

RESUMO

The packaging of genomic RNA (gRNA) into retroviral particles relies on the specific recognition by the Gag precursor of packaging signals (Psi), which maintain a complex secondary structure through long-range interactions (LRIs). However, it remains unclear whether the binding of Gag to Psi alone is enough to promote RNA packaging and what role LRIs play in this process. Using mouse mammary tumor virus (MMTV), we investigated the effects of mutations in 4 proposed LRIs on gRNA structure and function. Our findings revealed the presence of an unsuspected extended LRI, and hSHAPE revealed that maintaining a wild-type-like Psi structure is crucial for efficient packaging. Surprisingly, filter-binding assays demonstrated that most mutants, regardless of their packaging capability, exhibited significant binding to Pr77Gag, suggesting that Gag binding to Psi is insufficient for efficient packaging. Footprinting experiments indicated that efficient RNA packaging is promoted when Pr77Gag binds to 2 specific sites within Psi, whereas binding elsewhere in Psi does not lead to efficient packaging. Taken together, our results suggest that the 3D structure of the Psi/Pr77Gag complex regulates the assembly of viral particles around gRNA, enabling effective discrimination against other viral and cellular RNAs that may also bind Gag efficiently.


Assuntos
Produtos do Gene gag , Vírus do Tumor Mamário do Camundongo , RNA Viral , Montagem de Vírus , RNA Viral/metabolismo , RNA Viral/genética , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/metabolismo , Animais , Produtos do Gene gag/metabolismo , Produtos do Gene gag/genética , Camundongos , Conformação de Ácido Nucleico , Humanos , Ligação Proteica , Mutação , Empacotamento do Genoma Viral , Células HEK293
2.
Heliyon ; 9(1): e12892, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685375

RESUMO

The simian immunodeficiency virus (SIV) precursor polypeptide Pr55Gag drives viral assembly and facilitates specific recognition and packaging of the SIV genomic RNA (gRNA) into viral particles. While several studies have tried to elucidate the role of SIV Pr55Gag by expressing its different components independently, studies using full-length SIV Pr55Gag have not been conducted, primarily due to the unavailability of purified and biologically active full-length SIV Pr55Gag. We successfully expressed soluble, full-length SIV Pr55Gag with His6-tag in bacteria and purified it using affinity and gel filtration chromatography. In the process, we identified within Gag, a second in-frame start codon downstream of a putative Shine-Dalgarno-like sequence resulting in an additional truncated form of Gag. Synonymously mutating this sequence allowed expression of full-length Gag in its native form. The purified Gag assembled into virus-like particles (VLPs) in vitro in the presence of nucleic acids, revealing its biological functionality. In vivo experiments also confirmed formation of functional VLPs, and quantitative reverse transcriptase PCR demonstrated efficient packaging of SIV gRNA by these VLPs. The methodology we employed ensured the availability of >95% pure, biologically active, full-length SIV Pr55Gag which should facilitate future studies to understand protein structure and RNA-protein interactions involved during SIV gRNA packaging.

3.
Nucleic Acids Res ; 49(8): 4668-4688, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33836091

RESUMO

Retroviral RNA genome (gRNA) harbors cis-acting sequences that facilitate its specific packaging from a pool of other viral and cellular RNAs by binding with high-affinity to the viral Gag protein during virus assembly. However, the molecular intricacies involved during selective gRNA packaging are poorly understood. Binding and footprinting assays on mouse mammary tumor virus (MMTV) gRNA with purified Pr77Gag along with in cell gRNA packaging study identified two Pr77Gag binding sites constituting critical, non-redundant packaging signals. These included: a purine loop in a bifurcated stem-loop containing the gRNA dimerization initiation site, and the primer binding site (PBS). Despite these sites being present on both unspliced and spliced RNAs, Pr77Gag specifically bound to unspliced RNA, since only that could adopt the native bifurcated stem-loop structure containing looped purines. These results map minimum structural elements required to initiate MMTV gRNA packaging, distinguishing features that are conserved amongst divergent retroviruses from those perhaps unique to MMTV. Unlike purine-rich motifs frequently associated with packaging signals, direct involvement of PBS in gRNA packaging has not been documented in retroviruses. These results enhance our understanding of retroviral gRNA packaging/assembly, making it not only a target for novel therapeutic interventions, but also development of safer gene therapy vectors.


Assuntos
Produtos do Gene gag/metabolismo , Vírus do Tumor Mamário do Camundongo/metabolismo , Splicing de RNA , RNA Viral/metabolismo , Montagem de Vírus/genética , Animais , Sítios de Ligação/genética , Primers do DNA , Difusão Dinâmica da Luz , Produtos do Gene gag/genética , Genoma Viral , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Conformação de Ácido Nucleico , Purinas , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real
4.
J Mol Biol ; 433(10): 166923, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33713677

RESUMO

How retroviral Gag proteins recognize the packaging signals (Psi) on their genomic RNA (gRNA) is a key question that we addressed here using Mason-Pfizer monkey virus (MPMV) as a model system by combining band-shift assays and footprinting experiments. Our data show that Pr78Gag selects gRNA against spliced viral RNA by simultaneously binding to two single stranded loops on the MPMV Psi RNA: (1) a large purine loop (ssPurines), and (2) a loop which partially overlaps with a mostly base-paired purine repeat (bpPurines) and extends into a GU-rich binding motif. Importantly, this second Gag binding site is located immediately downstream of the major splice donor (mSD) and is thus absent from the spliced viral RNAs. Identifying elements crucial for MPMV gRNA packaging should help in understanding not only the mechanism of virion assembly by retroviruses, but also facilitate construction of safer retroviral vectors for human gene therapy.


Assuntos
Produtos do Gene gag/química , Guanina/química , Vírus dos Macacos de Mason-Pfizer/química , RNA Viral/química , Uracila/química , Animais , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Viral da Expressão Gênica , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Guanina/metabolismo , Interações Hospedeiro-Patógeno , Vírus dos Macacos de Mason-Pfizer/genética , Vírus dos Macacos de Mason-Pfizer/metabolismo , Conformação de Ácido Nucleico , Papio , Ligação Proteica , Conformação Proteica , Pegadas de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Transdução de Sinais , Uracila/metabolismo
5.
Viruses ; 11(8)2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357656

RESUMO

The feline immunodeficiency virus (FIV) full-length Pr50Gag precursor is a key player in the assembly of new viral particles. It is also a critical component of the efficient selection and packaging of two copies of genomic RNA (gRNA) into the newly formed virus particles from a wide pool of cellular and spliced viral RNA. To understand the molecular mechanisms involved during FIV gRNA packaging, we expressed the His6-tagged and untagged recombinant FIV Pr50Gag protein both in eukaryotic and prokaryotic cells. The recombinant Pr50Gag-His6-tag fusion protein was purified from soluble fractions of prokaryotic cultures using immobilized metal affinity chromatography (IMAC). This purified protein was able to assemble in vitro into virus-like particles (VLPs), indicating that it preserved its ability to oligomerize/multimerize. Furthermore, VLPs formed in eukaryotic cells by the FIV full-length Pr50Gag both in the presence and absence of His6-tag could package FIV sub-genomic RNA to similar levels, suggesting that the biological activity of the recombinant full-length Pr50Gag fusion protein was retained in the presence of His6-tag at the carboxy terminus. Successful expression and purification of a biologically active, recombinant full-length Pr50Gag-His6-tag fusion protein will allow study of the intricate RNA-protein interactions involved during FIV gRNA encapsidation.


Assuntos
Produtos do Gene gag/genética , Vírus da Imunodeficiência Felina/genética , Montagem de Vírus , Animais , Gatos , Escherichia coli/genética , Expressão Gênica , Produtos do Gene gag/isolamento & purificação , Genoma Viral , Células HEK293 , Humanos , RNA Viral/genética , Proteínas Recombinantes/genética
6.
RNA Biol ; 16(5): 612-625, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773097

RESUMO

The Mason-Pfizer monkey virus (MPMV) genomic RNA (gRNA) packaging signal is a highly-structured element with several stem-loops held together by two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences. These LRIs play a critical role in maintaining the structure of the 5´ end of the MPMV gRNA. Thus, one could hypothesize that the overall RNA secondary structure of this region is further architecturally held together by three other stem loops (SL3, Gag SL1, and Gag SL2) comprising of sequences from the distal parts of the 5´untranslated region (5' UTR) to ~ 120 nucleotides into gag, excluding gag sequences involved in forming the U5-Gag LRIs. To provide functional evidence for the biological significance of these stem loops during gRNA encapsidation, these structural motifs were mutated and their effects on MPMV RNA packaging and propagation were tested in a single round trans-complementation assay. The mutant RNA structures were further studied by high throughput SHAPE (hSHAPE) assay. Our results reveal that sequences involved in forming these three stem loops do not play crucial roles at an individual level during MPMV gRNA packaging or propagation. Further structure-function analysis indicates that the U5-Gag LRIs have a more important architectural role in stabilizing the higher order structure of the 5´ UTR than the three stem loops which have a more secondary and perhaps indirect role in stabilizing the overall RNA secondary structure of the region. Our work provides a better understanding of the molecular interactions that take place during MPMV gRNA packaging.


Assuntos
Produtos do Gene gag/genética , Vírus dos Macacos de Mason-Pfizer/fisiologia , RNA Viral/química , RNA Viral/genética , Regiões 5' não Traduzidas , Produtos do Gene gag/química , Humanos , Vírus dos Macacos de Mason-Pfizer/genética , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Estabilidade de RNA , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA