Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 42(5): 685-691, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30806486

RESUMO

In non-salmonid fish, Aeromonas salmonicidacan cause local infections with severe skin ulcerations, known as atypical furunculosis. In this study, we present a systemic infection by a virulent A. salmonicidain European perch (Perca fluviatilis).This infection was diagnosed in a Swiss warm water recirculation aquaculture system. The isolate of A.  salmonicida encodes a type three secretion system (TTSS) most likely located on a plasmid similar to pAsa5/pASvirA, which is known to specify one of the main virulence attributes of the species A. salmonicida. However, the genes specifying the TTSS of the perch isolate show a higher temperature tolerance than strains isolated from cold-water fish. The function of the TTSS in virulence was verified in a cytotoxicity test using bluegill fry and epithelioma papulosum cyprinid cells.


Assuntos
Adaptação Biológica , Aeromonas salmonicida/fisiologia , Aeromonas salmonicida/patogenicidade , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Temperatura Alta , Percas , Animais , Furunculose , Genes Bacterianos , Infecções por Bactérias Gram-Negativas/microbiologia , Virulência/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-30280094

RESUMO

Mycoplasma bovis causes bovine mycoplasmosis. The major clinical manifestations are pneumonia and mastitis. Recently an increase in the severity of mastitis cases was reported in Switzerland. At the molecular level, there is limited understanding of the mechanisms of pathogenicity of M. bovis. Host-pathogen interactions were primarily studied using primary bovine blood cells. Therefore, little is known about the impact of M. bovis on other cell types present in infected tissues. Clear in vitro phenotypes linked to the virulence of M. bovis strains or tissue predilection of specific M. bovis strains have not yet been described. We adapted bovine in vitro systems to investigate infection of epithelial cells with M. bovis using a cell line (MDBK: Madin-Darby bovine kidney cells) and two primary cells (PECT: bovine embryonic turbinate cells and bMec: bovine mammary gland epithelial cells). Two strains isolated before and after the emergence of severe mastitis cases were selected. Strain JF4278 isolated from a cow with mastitis and pneumonia in 2008 and strain L22/93 isolated in 1993 were used to assess the virulence of M. bovis genotypes toward epithelial cells with particular emphasis on mammary gland cells. Our findings indicate that M. bovis is able to adhere to and invade different epithelial cell types. Higher titers of JF4278 than L22/93 were observed in co-cultures with cells. The differences in titers reached between the two strains was more prominent for bMec cells than for MDBK and PECT cells. Moreover, M. bovis strain L22/93 induced apoptosis in MDBK cells and cytotoxicity in PECT cells but not in bMec cells. Dose-dependent variations in proliferation of primary epithelial cells were observed after M. bovis infection. Nevertheless, an indisputable phenotype that could be related to the increased virulence toward mammary gland cells is not obvious.


Assuntos
Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Mastite Bovina/fisiopatologia , Modelos Teóricos , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/crescimento & desenvolvimento , Pneumonia por Mycoplasma/veterinária , Animais , Bovinos , Células Cultivadas , Genótipo , Mastite Bovina/microbiologia , Infecções por Mycoplasma/fisiopatologia , Mycoplasma bovis/classificação , Mycoplasma bovis/genética , Mycoplasma bovis/patogenicidade , Pneumonia por Mycoplasma/fisiopatologia , Virulência
3.
Vet Res ; 49(1): 2, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29316971

RESUMO

Several studies suggest that synergisms between Mycoplasma bovis and other microorganisms might exacerbate disease outcome of bovine mycoplasmosis. Screening several bovine cell types to assess their potential use as in vitro infection models for M. bovis, it was observed that a widely used cell line of bovine macrophages (Bomac cells) is in fact persistently infected with bovine viral diarrhea virus (BVDV). The cell line was first cured of this virus allowing comparative studies between both cell lines. Subsequently, uptake and co-culture of two M. bovis strains of different clonal complexes with Bomac cells contaminated with BVDV and in BVDV-free Bomac cells were assessed. Additionally, cell viability, cytotoxicity and induction of apoptosis after infection with M. bovis were evaluated. No differences in the levels of uptake and growth in co-culture were observed between the two Bomac cell types and both M. bovis strains. Cytotoxicity was increased after infection of BVDV-free cells with one of the two strains, while apoptotic cell death was slightly induced by this strain in both cell lines. Overall, the presence or absence of BVDV in Bomac cells did not grossly change the parameters tested upon infection with M. bovis. Nevertheless, this cell model is very useful when studying viral co-infections with bacteria and could also be used for multiple co-infections. Considering the broad contamination of cell cultures with BVDV, careful screening for this virus should routinely be performed as its presence might be relevant depending on the molecular mechanisms being investigated.


Assuntos
Apoptose , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Coinfecção/veterinária , Macrófagos/imunologia , Infecções por Mycoplasma/microbiologia , Animais , Bovinos , Linhagem Celular/microbiologia , Linhagem Celular/virologia , Coinfecção/microbiologia , Coinfecção/virologia , Vírus da Diarreia Viral Bovina/fisiologia , Macrófagos/microbiologia , Mycoplasma bovis/fisiologia
4.
PLoS One ; 10(8): e0134897, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244892

RESUMO

We report the first de novo sequence assembly and analysis of the genome of Testudinid herpesvirus 3 (TeHV3), one of the most pathogenic chelonian herpesviruses. The genome of TeHV3 is at least 150,080 nucleotides long, is arranged in a type D configuration and comprises at least 102 open reading frames extensively co-linear with those of Human herpesvirus 1. Consistently, the phylogenetic analysis positions TeHV3 among the Alphaherpesvirinae, closely associated with Chelonid herpesvirus 5, a Scutavirus. To date, there has been limited genetic characterization of TeHVs and a resolution beyond the genotype was not feasible because of the lack of informative DNA sequences. To exemplify the potential benefits of the novel genomic information provided by this first whole genome analysis, we selected the glycoprotein B (gB) gene, for detailed comparison among different TeHV3 isolates. The rationale for selecting gB is that it encodes for a well-conserved protein among herpesviruses but is coupled with a relevant antigenicity and is consequently prone to accumulate single nucleotide polymorphisms. These features were considered critical for an ideal phylogenetic marker to investigate the potential existence of distinct TeHV3 genogroups and their associated pathology. Fifteen captive tortoises presumptively diagnosed to be infected with TeHVs or carrying compatible lesions on the basis of either the presence of intranuclear inclusions (presumptively infected) and/or diphtheronecrotic stomatitis-glossitis or pneumonia (compatible lesions) were selected for the study. Viral isolation, TeHV identification, phylogenetic analysis and pathological characterization of the associated lesions, were performed. Our results revealed 1) the existence of at least two distinct TeHV3 genogroups apparently associated with different pathologies in tortoises and 2) the first evidence for a putative homologous recombination event having occurred in a chelonian herpesvirus. This novel information is not only fundamental for the genetic characterization of this virus but is also critical to lay the groundwork for an improved understanding of host-pathogen interactions in chelonians and contribute to tortoise conservation.


Assuntos
Genômica/métodos , Herpesviridae/genética , Herpesviridae/fisiologia , Tartarugas/virologia , Sequência de Aminoácidos , Animais , DNA Polimerase Dirigida por DNA/genética , Feminino , Genoma/genética , Genótipo , Geografia , Herpesviridae/classificação , Interações Hospedeiro-Patógeno , Masculino , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Suíça , Sequências Repetidas Terminais/genética , Proteínas do Envelope Viral/genética
5.
Vet Microbiol ; 179(3-4): 336-40, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26211967

RESUMO

Mycoplasma bovis is an emerging bacterial agent causing bovine mastitis. Although these cell wall-free bacteria lack classical virulence factors, they are able to activate the immune system of the host. However, effects on the bovine mammary immune system are not yet well characterized and detailed knowledge would improve the prevention and therapy of mycoplasmal mastitis. The aim of this study was to investigate the immunogenic effects of M. bovis on the mammary gland in an established primary bovine mammary epithelial cell (bMEC) culture system. Primary bMEC of four different cows were challenged with live and heat-inactivated M. bovis strain JF4278 isolated from acute bovine mastitis, as well as with the type strain PG45. The immune response was evaluated 6 and 24h after mycoplasmal challenge by measuring the relative mRNA expression of selected immune factors by quantitative PCR. M. bovis triggered an immune response in bMEC, reflected by the upregulation of tumor necrosis factor-α, interleukin(IL)-1ß, IL-6, IL-8, lactoferrin, Toll-like receptor-2, RANTES, and serum amyloid A mRNA. Interestingly, this cellular reaction was only observed in response to live, but not to heat-inactivated M. bovis, in contrast to other bacterial pathogens of mastitis such as Staphylococcus aureus. This study provides evidence that bMEC exhibit a strong inflammatory reaction in response to live M. bovis. The lack of a cellular response to heat-inactivated M. bovis supports the current hypothesis that mycoplasmas activate the immune system through secreted secondary metabolites.


Assuntos
Bovinos , Células Epiteliais/imunologia , Glândulas Mamárias Animais/citologia , Mycoplasma bovis/fisiologia , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Temperatura Alta
6.
BMC Vet Res ; 11: 27, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25881067

RESUMO

BACKGROUND: Mycoplasma mycoides subsp. mycoides (Mmm) is the causative agent of contagious bovine pleuropneumonia (CBPP), a respiratory disease of cattle, whereas the closely related Mycoplasma mycoides subsp. capri (Mmc) is a goat pathogen. Cyto-adherence is a crucial step in host colonization by mycoplasmas and subsequent pathogenesis. The aim of this study was to investigate the interactions between Mmm and mammalian host cells by establishing a cyto-adherence flow cytometric assay and comparing tissue and species specificity of Mmm and Mmc strains. RESULTS: There were little significant differences in the adherence patterns of eight different Mmm strains to adult bovine lung epithelial cells. However, there was statistically significant variation in binding to different host cells types. Highest binding was observed with lung epithelial cells, intermediate binding with endothelial cells and very low binding with fibroblasts, suggesting the presence of effective adherence of Mmm on cells lining the airways of the lung, which is the target organ for this pathogen, possibly by high expression of a specific receptor. However, binding to bovine fetal lung epithelial cells was comparably low; suggesting that the lack of severe pulmonary disease seen in many infected young calves can be explained by reduced expression of a specific receptor. CONCLUSIONS: Mmm bound with high efficiency to adult bovine lung cells and less efficiently to calves or goat lung cells. The data show that cyto-adherence of Mmm is species- and tissue- specific confirming its role in colonization of the target host and subsequent infection and development of CBPP.


Assuntos
Aderência Bacteriana/fisiologia , Bovinos , Células Epiteliais/microbiologia , Mycoplasma mycoides/fisiologia , Mucosa Respiratória/citologia , Animais , Linhagem Celular , Células Cultivadas , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Cabras , Microscopia de Fluorescência/métodos , Sensibilidade e Especificidade , Especificidade da Espécie
7.
J Virol ; 88(14): 8057-64, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24807725

RESUMO

The hemagglutinin (H) gene of canine distemper virus (CDV) encodes the receptor-binding protein. This protein, together with the fusion (F) protein, is pivotal for infectivity since it contributes to the fusion of the viral envelope with the host cell membrane. Of the two receptors currently known for CDV (nectin-4 and the signaling lymphocyte activation molecule [SLAM]), SLAM is considered the most relevant for host susceptibility. To investigate how evolution might have impacted the host-CDV interaction, we examined the functional properties of a series of missense single nucleotide polymorphisms (SNPs) naturally accumulating within the H-gene sequences during the transition between two distinct but related strains. The two strains, a wild-type strain and a consensus strain, were part of a single continental outbreak in European wildlife and occurred in distinct geographical areas 2 years apart. The deduced amino acid sequence of the two H genes differed at 5 residues. A panel of mutants carrying all the combinations of the SNPs was obtained by site-directed mutagenesis. The selected mutant, wild type, and consensus H proteins were functionally evaluated according to their surface expression, SLAM binding, fusion protein interaction, and cell fusion efficiencies. The results highlight that the most detrimental functional effects are associated with specific sets of SNPs. Strikingly, an efficient compensational system driven by additional SNPs appears to come into play, virtually neutralizing the negative functional effects. This system seems to contribute to the maintenance of the tightly regulated function of the H-gene-encoded attachment protein. Importance: To investigate how evolution might have impacted the host-canine distemper virus (CDV) interaction, we examined the functional properties of naturally occurring single nucleotide polymorphisms (SNPs) in the hemagglutinin gene of two related but distinct strains of CDV. The hemagglutinin gene encodes the attachment protein, which is pivotal for infection. Our results show that few SNPs have a relevant detrimental impact and they generally appear in specific combinations (molecular signatures). These drastic negative changes are neutralized by compensatory mutations, which contribute to maintenance of an overall constant bioactivity of the attachment protein. This compensational mechanism might reflect the reaction of the CDV machinery to the changes occurring in the virus following antigenic variations critical for virulence.


Assuntos
Substituição de Aminoácidos , Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/fisiologia , Hemaglutininas Virais/genética , Hemaglutininas Virais/metabolismo , Mutação de Sentido Incorreto , Ligação Viral , Animais , Animais Selvagens , Antígenos CD/metabolismo , Análise Mutacional de DNA , Cinomose/epidemiologia , Cinomose/virologia , Vírus da Cinomose Canina/isolamento & purificação , Europa (Continente)/epidemiologia , Evolução Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Supressão Genética , Proteínas Virais de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA