Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(9): 2480-2488, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39225545

RESUMO

Proteomics has emerged as a powerful tool for studying cancer biology, developing diagnostics, and therapies. With the continuous improvement and widespread availability of high-throughput proteomic technologies, the generation of large-scale proteomic data has become more common in cancer research, and there is a growing need for resources that support the sharing and integration of multi-omics datasets. Such datasets require extensive metadata including clinical, biospecimen, and experimental and workflow annotations that are crucial for data interpretation and reanalysis. The need to integrate, analyze, and share these data has led to the development of NCI's Proteomic Data Commons (PDC), accessible at https://pdc.cancer.gov. As a specialized repository within the NCI Cancer Research Data Commons (CRDC), PDC enables researchers to locate and analyze proteomic data from various cancer types and connect with genomic and imaging data available for the same samples in other CRDC nodes. Presently, PDC houses annotated data from more than 160 datasets across 19 cancer types, generated by several large-scale cancer research programs with cohort sizes exceeding 100 samples (tumor and associated normal when available). In this article, we review the current state of PDC in cancer research, discuss the opportunities and challenges associated with data sharing in proteomics, and propose future directions for the resource. SIGNIFICANCE: The Proteomic Data Commons (PDC) plays a crucial role in advancing cancer research by providing a centralized repository of high-quality cancer proteomic data, enriched with extensive clinical annotations. By integrating and cross-referencing with complementary genomic and imaging data, the PDC facilitates multi-omics analyses, driving comprehensive insights, and accelerating discoveries across various cancer types.


Assuntos
Computação em Nuvem , Genômica , National Cancer Institute (U.S.) , Neoplasias , Proteômica , Humanos , Proteômica/métodos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/diagnóstico , Genômica/métodos , Estados Unidos
2.
Cancer Cell ; 41(8): 1397-1406, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37582339

RESUMO

The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigates tumors from a proteogenomic perspective, creating rich multi-omics datasets connecting genomic aberrations to cancer phenotypes. To facilitate pan-cancer investigations, we have generated harmonized genomic, transcriptomic, proteomic, and clinical data for >1000 tumors in 10 cohorts to create a cohesive and powerful dataset for scientific discovery. We outline efforts by the CPTAC pan-cancer working group in data harmonization, data dissemination, and computational resources for aiding biological discoveries. We also discuss challenges for multi-omics data integration and analysis, specifically the unique challenges of working with both nucleotide sequencing and mass spectrometry proteomics data.


Assuntos
Neoplasias , Proteogenômica , Humanos , Proteômica , Genômica , Neoplasias/genética , Perfilação da Expressão Gênica
3.
Int J Mol Sci ; 21(9)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349205

RESUMO

The use of fluorescent imaging probes that monitor the activity of proteases that experience an increase in expression and activity in tumors is well established. These probes can be conjugated to nanoparticles of iron oxide, creating a multimodal probe serving as both a magnetic resonance imaging (MRI) agent and an indicator of local protease activity. Previous works describe probes for cathepsin D (CatD) and metalloproteinase-2 (MMP2) protease activity grafted to cross-linked iron oxide nanoparticles (CLIO). Herein, we have synthesized a triply labeled fluorescent iron oxide nanoparticle molecular imaging (MI) probe, including an AF750 substrate concentration reporter along with probes for cathepsin B (CatB) sand MMP2 protease activity. The reporter provides a baseline signal from which to compare the activity of the two proteases. The activity of the MI probe was verified through incubation with the proteases and tested in vitro using the human HT29 tumor cell line and in vivo using female nude mice injected with HT29 cells. We found the MI probe had the appropriate specificity to the activity of their respective proteases, and the reporter dye did not activate when incubated in the presence of only MMP2 and CatB. Probe fluorescent activity was confirmed in vitro, and reporter signal activation was also noted. The fluorescent activity was also visible in vivo, with injected HT29 cells exhibiting fluorescence, distinguishing them from the rest of the animal. The reporter signal was also observable in vivo, which allowed the signal intensities of the protease probes to be corrected; this is a unique feature of this MI probe design.


Assuntos
Corantes Fluorescentes , Imagem Molecular/métodos , Neoplasias/sangue , Neoplasias/enzimologia , Animais , Biomarcadores , Catepsina B , Linhagem Celular Tumoral , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Imagem Molecular/normas , Sensibilidade e Especificidade , Análise Espectral , Coloração e Rotulagem/métodos
4.
Biomedicines ; 8(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120908

RESUMO

Amyloid precursor protein (APP) is directly related to Aß amyloidosis-a hallmark of Alzheimer's disease (AD). However, the impact of environmental factors upon APP biology and Aß amyloid pathology have not been well studied. The increased use of nanoparticles (NPs) or engineered nanomaterials (ENMs) has led to a growing body of evidence suggesting that exposure to metal/metal oxide NPs, such as Fe2O3, CuO, and ZnO, may contribute to the pathophysiology of neurodegenerative diseases such as AD through neuroinflammation. Our previous studies indicated that exposure to CuO nanoparticles (CuONPs) induce potent in vitro neurotoxicity. Herein, we investigated the effects on APP expression in neuronal cells exposed to different metal oxide NPs. We found a low dose of CuONPs effectively activated the NFκB signaling pathway and increased APP expression. Moreover, the inhibition of p65 expression using siRNA abolished CuONP-mediated APP expression, suggesting that NFκB-regulated APP expression in response to CuONP exposure may be associated with AD pathology.

5.
Biomolecules ; 10(3)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155778

RESUMO

A large body of evidence indicates that dysregulation of cerebral biometals (Fe, Cu, Zn) and their interactions with amyloid precursor protein (APP) and Aß amyloid may contribute to the Alzheimer's disease (AD) Aß amyloid pathology. However, the molecular underpinnings associated with the interactions are still not fully understood. Herein we have further validated the exacerbation of Aß oligomerization by Cu and H2O2 in vitro. We have also reported that Cu enhanced APP translations via its 5' untranslated region (5'UTR) of mRNA in SH-SY5Y cells, and increased Aß amyloidosis and expression of associated pro-inflammatory cytokines such as MCP-5 in Alzheimer's APP/PS1 doubly transgenic mice. This preliminary study may further unravel the pathogenic role of Cu in Alzheimer's Aß amyloid pathogenesis, warranting further investigation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Cobre/toxicidade , Biossíntese de Proteínas , Multimerização Proteica/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/biossíntese , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Transgênicos
6.
Artigo em Inglês | MEDLINE | ID: mdl-32033400

RESUMO

Fe2O3, CuO and ZnO nanoparticles (NP) have found various industrial and biomedical applications. However, there are growing concerns among the general public and regulators about their potential environmental and health impacts as their physio-chemical interaction with biological systems and toxic responses of the latter are complex and not well understood. Herein we first reported that human SH-SY5Y and H4 cells and rat PC12 cell lines displayed concentration-dependent neurotoxic responses to insults of CuO nanoparticles (CuONP), but not to Fe2O3 nanoparticles (Fe2O3NP) or ZnO nanoparticles (ZnONP). This study provides evidence that CuONP induces neuronal cell apoptosis, discerns a likely p53-dependent apoptosis pathway and builds out the relationship between nanoparticles and Alzheimer's disease (AD) through the involvement of reactive oxygen species (ROS) and increased Aß levels in SH-SY5Y and H4 cells. Our results implicate that exposure to CuONP may be an environmental risk factor for AD. For public health concerns, regulation for environmental or occupational exposure of CuONP are thus warranted given AD has already become a pandemic.


Assuntos
Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/efeitos dos fármacos , Amiloidose/induzido quimicamente , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Cobre/toxicidade , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Animais , Exposição Ambiental/efeitos adversos , Humanos , Modelos Animais , Síndromes Neurotóxicas , Ratos , Oligoelementos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA