Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 182: 114230, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979352

RESUMO

L-asparaginase (ASNase) from Escherichia coli (EcAII) is used in the treatment of acute lymphoblastic leukaemia (ALL). EcAII activity in vivo has been described to be influenced by the human lysosomal proteases asparaginyl endopeptidase (AEP) and cathepsin B (CTSB); these hydrolases cleave and could expose epitopes associated with the immune response against EcAII. In this work, we show that ASNase resistance to CTSB and/or AEP influences the formation of anti-ASNase antibodies, one of the main causes of hypersensitivity reactions in patients. Error-prone polymerase chain reaction was used to produce variants of EcAII more resistant to proteolytic cleavage by AEP and CTSB. The variants with enzymatic activity and cytotoxicity levels equivalent to or better than EcAII WT were submitted to in vivo assays. Only one of the mutants presented increased serum half-life, so resistance to these proteases is not the only feature involved in EcAII stability in vivo. Our results showed alteration of the phenotypic profile of B cells isolated after animal treatment with different protease-resistant proteoforms. Furthermore, mice that were exposed to the protease-resistant proteoforms presented lower anti-asparaginase antibodies production in vivo. Our data suggest that modulating resistance to lysosomal proteases can result in less immunogenic protein drugs.


Assuntos
Antineoplásicos/farmacologia , Asparaginase/farmacologia , Produtos Biológicos/farmacologia , Fenômenos Imunogenéticos/efeitos dos fármacos , Lisossomos/imunologia , Peptídeo Hidrolases/farmacologia , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Asparaginase/química , Asparaginase/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Galinhas , Relação Dose-Resposta a Droga , Escherichia coli , Feminino , Cavalos , Humanos , Fenômenos Imunogenéticos/fisiologia , Células Jurkat , Lisossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Peptídeo Hidrolases/química , Peptídeo Hidrolases/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Estrutura Secundária de Proteína
2.
Artigo em Inglês | MEDLINE | ID: mdl-30800657

RESUMO

L-Asparaginase (ASNase) is used in the treatment of acute lymphoblastic leukemia, being produced and commercialized only from bacterial sources. Alternative Saccharomyces cerevisiae ASNase II coded by the ASP3 gene was biosynthesized by recombinant Pichia pastoris MUT s under the control of the AOX1 promoter, using different cultivation strategies. In particular, we applied multistage fed-batch cultivation divided in four distinct phases to produce ASNase II and determine the fermentation parameters, namely specific growth rate, biomass yield, and enzyme activity. Cultivation of recombinant P. pastoris under favorable conditions in a modified defined medium ensured a dry biomass concentration of 31 gdcw.L-1 during glycerol batch phase, corresponding to a biomass yield of 0.77 gdcw.g glycerol - 1 and a specific growth rate of 0.21 h-1. After 12 h of glycerol feeding under limiting conditions, cell concentration achieved 65 gdcw.L-1 while ethanol concentration was very low. During the phase of methanol induction, biomass concentration achieved 91 gdcw.L-1, periplasmic specific enzyme activity 37.1 U.g dcw - 1 , volumetric enzyme activity 3,315 U.L-1, overall enzyme volumetric productivity 31 U.L-1.h-1, while the specific growth rate fell to 0.039 h-1. Our results showed that the best strategy employed for the ASNase II production was using glycerol fed-batch phase with pseudo exponential feeding plus induction with continuous methanol feeding.

3.
Biotechnol Prog ; 33(2): 416-424, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27863173

RESUMO

l-asparaginase (ASNase) is a biopharmaceutical widely used to treat child leukemia. However, it presents some side effects, and in order to provide an alternative biopharmaceutical, in this work, the genes encoding ASNase from Saccharomyces cerevisiae (Sc_ASNaseI and Sc_ASNaseII) were cloned in the prokaryotic expression system Escherichia coli. In the 93 different expression conditions tested, the Sc_ASNaseII protein was always obtained as an insoluble and inactive form. However, the Sc_ASNaseI (His)6 -tagged recombinant protein was produced in large amounts in the soluble fraction of the protein extract. Affinity chromatography was performed on a Fast Protein Liquid Chromatography (FPLC) system using Ni2+ -charged, HiTrap Immobilized Metal ion Affinity Chromatography (IMAC) FF in order to purify active Sc_ASNaseI recombinant protein. The results suggest that the strategy for the expression and purification of this potential new biopharmaceutical protein with lower side effects was efficient since high amounts of soluble Sc_ASNaseI with high specific activity (110.1 ± 0.3 IU mg-1 ) were obtained. In addition, the use of FPLC-IMAC proved to be an efficient tool in the purification of this enzyme, since a good recovery (40.50 ± 0.01%) was achieved with a purification factor of 17-fold. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:416-424, 2017.


Assuntos
Asparaginase/biossíntese , Asparaginase/química , Escherichia coli/fisiologia , Saccharomyces cerevisiae/fisiologia , Asparaginase/genética , Clonagem Molecular/métodos , Ativação Enzimática , Estabilidade Enzimática , Regulação Bacteriana da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA