Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Resist Updat ; 66: 100890, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455341

RESUMO

Drug resistance is well-defined as a serious problem in our living world. To survive, microbes develop defense strategies against antimicrobial drugs. Drugs exhibit less or no effective results against microbes after the emergence of resistance because they are unable to cross the microbial membrane, in order to alter enzymatic systems, and/or upregulate efflux pumps, etc. Drug resistance issues can be addressed effectively if a "Resistance-Proof" or "Resistance-Resistant" antimicrobial agent is developed. This article discusses first the need for resistance-proof drugs, the imminent properties of resistance-proof drugs, current and future research progress in the discovery of resistance-proof antimicrobials, the inherent challenges, and opportunities. A molecule having imminent resistance-proof properties could target microbes efficiently, increase potency, and rule out the possibility of early resistance. This review triggers the scientific community to think about how an upsurge in drug resistance can be averted and emphasizes the discussion on the development of next-generation antimicrobials that will provide a novel effective solution to combat the global problem of drug resistance. Hence, resistance-proof drug development is not just a requirement but rather a compulsion in the drug discovery field so that resistance can be battled effectively. We discuss several properties of resistance-proof drugs which could initiate new ways of thinking about next-generation antimicrobials to resolve the drug resistance problem. This article sheds light on the issues of drug resistance and discusses solutions in terms of the resistance-proof properties of a molecule. In summary, the article is a foundation to break new ground in the development of resistance-proof therapeutics in the field of infection biology.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Resistência a Medicamentos , Descoberta de Drogas/métodos
2.
Vaccines (Basel) ; 10(12)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36560482

RESUMO

The world has been affected socioeconomically for the last two years due to the emergence of different variants of the COVID-19 virus. Vaccination is the major and most efficient way to prevent the widening of this pandemic. Those who are having comorbidities are more vulnerable to serious infections due to their immunocompromised state. Additionally, cancer patients could be at significant risk for COVID-19. In this pandemic era, the diagnosis and treatment of cancer were significantly affected. Clinical trials at the initial stage were performed on healthy or COVID-19 infected patients. This produces a greater level of hesitancy in cancer patients. This review article provide an update regarding the vaccination and treatment for COVID-19 in patients with cancer and future directions.

3.
Front Oncol ; 12: 949868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992866

RESUMO

Colorectal cancer is a major health problem, and it is the third most diagnosed cancer in the United States. The current treatment for colorectal cancer includes irinotecan, a topoisomerase I inhibitor, and other targeted drugs, such as bevacizumab and regorafenib. The low response rates and incidence of high toxicity caused by these drugs instigated an evaluation of the anticancer efficacy of a series of 13 thiazolyl hydrazone derivatives of 1-indanone, and four compounds among them show favorable anticancer activity against some of the tested colorectal cancer cell lines with IC50 values ranging from 0.41 ± 0.19 to 6.85 ± 1.44 µM. It is noteworthy that one of the indanone-based thiazolyl hydrazone (ITH) derivatives, N-Indan-1-ylidene-N'-(4-Biphenyl-4-yl-thiazol-2-yl)-hydrazine (ITH-6), has a better cytotoxicity profile against p53 mutant colorectal cancer cells HT-29, COLO 205, and KM 12 than a p53 wild-type colorectal cancer cell line, such as HCT 116. Mechanistic studies show that ITH-6 arrests these three cancer cell lines in the G2/M phase and induces apoptosis. It also causes a rise in the reactive oxygen species level with a remarkable decrease in the glutathione (GSH) level. Moreover, ITH-6 inhibits the expression of NF-κB p65 and Bcl-2, which proves its cytotoxic action. In addition, ITH-6 significantly decreased tumor size, growth rate, and tumor volume in mice bearing HT-29 and KM 12 tumor xenografts. Moreover, CRISPR/Cas9 was applied to establish an NF-κB p65 gene knockout HT-29 cell line model to validate the target of ITH-6. Overall, the results suggest that ITH-6 could be a potential anticancer drug candidate for p53 mutant colorectal cancers.

4.
Recent Pat Anticancer Drug Discov ; 18(2): 174-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770412

RESUMO

BACKGROUND: Doxorubicin is a significant drug for the treatment of breast cancer, but its cardiotoxicity is an obvious obstacle. Previously, we confirmed that ruthenium complex (Δ-Ru1) and doxorubicin (Δ-Ru1/Dox) combination had a synergistic effect in MCF-7 cells, but its biological effect in vivo is unknown. PURPOSES: To find a way to overcome the toxicity of doxorubicin and build MCF-7 xenograft tumor mouse model to test whether this potential combination has better efficacy and less toxicity. METHODS: The tumor model of nude mice was established to verify the synergistic antitumor effect of the drug combination in vivo. H&E staining was used to detect the toxicity of major organs in mice. Sirius red staining and transmission electron microscopy were used to detect cardiotoxicity. Prussian blue was used to measure iron accumulation in heart tissue. TUNEL staining was used to detect the antitumor effect in vivo. Immunohistochemical staining was used to detect the expression of iron death-related pathway proteins. High-throughput sequencing techniques were used to determine the molecular mechanism of ferroptosis. RESULTS: Histopathological analysis of tumor tissues indicated that the Δ-Ru1/Dox combination significantly promoted tumor cell apoptosis. Doxorubicin damaged cardiac tissue by inducing fibrosis and iron accumulation, but it was reversed by the Δ-Ru1/Dox combination treatment. Further exploration found that doxorubicin could regulate iron accumulation in the ferroptosis pathway and the expression of lipid peroxidation-related proteins, including upregulation of Tf, DMT1, and HO-1, and downregulation of Nrf2, SLC7A11, and GPX4. CONCLUSION: Δ-Ru1/Dox combination synergistically inhibits tumor growth, and it can significantly reduce and alleviate the toxic side effects of doxorubicin, especially cardiac injury.


Assuntos
Neoplasias da Mama , Rutênio , Camundongos , Humanos , Animais , Feminino , Rutênio/farmacologia , Rutênio/uso terapêutico , Cardiotoxicidade , Camundongos Nus , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias da Mama/patologia , Ferro/farmacologia , Ferro/uso terapêutico , Apoptose
5.
Front Pharmacol ; 13: 867128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450042

RESUMO

The efficacy of cancer chemotherapy can be attenuated or abrogated by multidrug resistance (MDR) in cancer cells. In this study, we determined the effect of the CDK4/6 inhibitor, ribociclib (or LEE011), on P-glycoprotein (P-gp)-mediated MDR in the human epidermoid carcinoma MDR cell line, KB-C2, which is widely used for studying P-gp-mediated MDR in cancers. The incubation of KB-C2 cells with ribociclib (3-9 µM) increased the efficacy of colchicine, a substrate for P-gp. The cell expression of P-gp was down-regulated at both translation and transcription levels. Furthermore, ribociclib produced a 3.5-fold increase in the basal activity of P-gp ATPase, and the concentration required to increase basal activity by 50% (EC50) was 0.04 µM. Docking studies indicated that ribociclib interacted with the drug-substrate binding site of P-gp. The short-term and long-term intracellular accumulation of doxorubicin greatly increased in the KB-C2 cells co-cultured with ribociclib, indicating ribociclib inhibited the drug efflux activity of P-gp. The results of our study indicate that LEE011 may be a potential agent for combined therapy of the cancers with P-gp mediated MDR.

6.
MedComm (2020) ; 2(4): 765-777, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34977876

RESUMO

Multidrug resistance (MDR) has been extensively reported in colorectal cancer patients, which remains a major cause of chemotherapy failure. One of the critical mechanisms of MDR in colorectal cancer is the reduced intracellular drug level led by the upregulated expression of the ATP-binding cassette (ABC) transporters, particularly, ABCB1/P-gp. In this study, the CRISPR/Cas9 system was utilized to target ABCB1 in MDR colorectal cancer SW620/Ad300 cell line with ABCB1 overexpression. The results showed that stable knockout of ABCB1 gene by the CRISPR/Cas9 system was achieved in the MDR cancer cells. Reversal of MDR against ABCB1 chemotherapeutic drugs increased intracellular accumulation of [3H]-paclitaxel accumulation, and decreased drug efflux activity was observed in MDR SW620/Ad300 cells after ABCB1 gene knockout. Further tests using the 3D multicellular tumor spheroid model suggested that deficiency in ABCB1 restrained tumor spheroid growth and restore sensitivity to paclitaxel in MDR tumor spheroids. Overall, the CRISPR/Cas9 system targeting the ABCB1 gene can be an effective approach to overcome ABCB1-mediated MDR in colorectal cancer SW620/Ad300 cells.

7.
J Cell Mol Med ; 23(2): 694-701, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30450768

RESUMO

Immunometabolism is a branch dealing at the interface of immune functionalities and metabolic regulations. Considered as a bidirectional trafficking, metabolic contents and their precursors bring a considerable change in immune cells signal transductions which as a result affect the metabolic organs and states as an implication. Lipid metabolic ingredients form a major chunk of daily diet and have a proven contribution in immune cells induction, which then undergo metabolic pathway shuffling inside their ownself. Lipid metabolic states activate relevant metabolic pathways inside immune cells that in turn prime appropriate responses to outside environment in various states including lipid metabolic disorders itself and cancers as an extension. Although data on Immunometabolism are still growing, but scientific community need to adjust and readjust according to recent data on given subject. This review attempts to provide current important data on Immunometabolism and consequently its metabolic ramifications. Incumbent data on various lipid metabolic deregulations like obesity, metabolic syndrome, obese asthma and atherosclerosis are analysed. Further, metabolic repercussions on cancers and its immune modalities are also analysed.


Assuntos
Asma/metabolismo , Aterosclerose/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Obesidade/metabolismo , Animais , Asma/genética , Asma/imunologia , Asma/patologia , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/patologia , Modelos Animais de Doenças , Humanos , Imunidade Inata , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/imunologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Subpopulações de Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/imunologia , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Obesidade/genética , Obesidade/imunologia , Obesidade/patologia , Transdução de Sinais , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
8.
J Biochem Mol Toxicol ; 31(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28590547

RESUMO

This study investigated the anticancer effects of geraniin on ovarian cancer cells and the signaling pathways involved. Ovarian cancer cells were treated with different concentrations of geraniin for 48 h and examined for viability, apoptosis, mitochondrial membrane depolarization, and gene expression. Xenograft tumor studies were performed to determine the anticancer activity of geraniin in vivo. Geraniin significantly decreased cancer cell viability in a concentration-dependent fashion. Geraniin significantly triggered apoptosis, which was accompanied by loss of mitochondrial membrane potential and increased cytochrome c release and caspsase-3 activity. Mechanistically, geraniin significantly downregulated Mcl-1 and impaired NF-κB p65 binding to the mcl-1 promoter. Overexpression of Mcl-1 significantly reversed geraniin-induced apoptosis in OVCAR3 cells. In addition, geraniin retarded ovarian cancer growth and reduced expression of phospho-p65 and Mcl-1. Collectively, geraniin elicits growth suppression in ovarian cancer through inhibition of NF-κB and Mcl-1 and may provide therapeutic benefits for this malignancy.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glucosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Neoplasias Ovarianas/tratamento farmacológico , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Eur J Pharmacol ; 775: 106-12, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872989

RESUMO

Skin pigmentation is a complex process controlled by many different factors. Substance P (SP) regulates many biological functions, including melanogenesis and stress. Our previous study indicated that regulation of SP on melanocyte function was mediated by neurokinin 1 receptor (NK1 receptor). Substantial evidence has accumulated that psychological stress can be associated with skin pigmentation, so that the impact of 5-hydroxytryptamine (5-HT), one of the important factors participating in stress process, on melanogenesis has also been concerned. It has been reported that 5-HT induces melanin synthesis via 5-HT2A receptor. Furthermore, 5-HT2A receptor and NK1 receptor are G-protein coupled receptors (GPCRs) and both expressed on melanocyte, the present study was designed to investigate whether SP has influence on the adjustment function of 5-HT. Our data demonstrated that, SP inhibited 5-HT2A receptor expression to neutralize the pro-melanogenesis effect of 5-HT on B16F10 cells. The up-regulation of NK1 receptor expression was simultaneous with the down-regulation of 5-HT2A receptor treated by SP. This inhibition of 5-HT2A receptor expression by SP could be reversed by NK1 receptor antagonist Spantide I. Our studies indicated that SP could directly induce B16F10 cells apoptosis in vitro. 5-HT and 5-HT2A receptor agonist could mitigate this apoptotic effect of SP. It is the strong evidence of possible cross-talk between GPCRs and giving enlightenments when screening desirable drugs for target receptors.


Assuntos
Apoptose/efeitos dos fármacos , Melaninas/biossíntese , Melanoma Experimental/metabolismo , Serotonina/farmacologia , Substância P/farmacologia , Animais , Linhagem Celular Tumoral , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptores da Neurocinina-1/metabolismo , Estresse Fisiológico
10.
Cytokine ; 69(1): 29-38, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25022959

RESUMO

Interleukin-18 (IL-18), a member of the IL-1 family of cytokines, was initially identified as an interferon (IFN)-γ-inducing factor. IL-18 is expressed in both immune and non-immune cells and participates in the adjustment of multitude cellular functions. Nonetheless, the effects of IL-18 on cortical neurons have not been explored. The present study was conducted to investigate the influence of IL-18 on rat primary cortical neurons and elucidate the underlying mechanisms. We proved that rrIL-18 increased the brain-derived neurotrophic factor (BDNF) expression in a time-dependent manner. Treatment with rrIL-18 (50 ng/ml) deactivated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) by facilitating its phosphorylation, enhanced the expression of Phosphoinositide 3-OH kinase (PI3K) and p-Akt, standing for the activation of the PI3K/Akt pathway. As its pivotal downstream pathways, nuclear factor-kappa B (NF-κB), cAMP-responsive element binding protein (CREB)/Bcl-2 and glycogen synthase kinase-3ß (GSK-3ß) were examined in further steps. Our data revealed that rrIL-18 stimulated NF-κB activation, improved p-CREB and anti-apoptotic Bcl-2 expression levels. But rrIL-18 had little or no effect on GSK-3ß pathway. Besides, rrIL-18 increased levels of BDNF and Bcl-2/Bax ratio and decreased cleaved caspase-3 expression to protect cortical neurons from damage induced by oxygen-glucose deprivation (OGD). These results in vitro showed the protection of IL-18 on cortical neurons. And this direct neuroprotective effect of IL-18 is crippled by PI3K inhibitor wortmannin.


Assuntos
Córtex Cerebral/metabolismo , Interleucina-18/farmacologia , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Androstadienos/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Caspase 3/biossíntese , Córtex Cerebral/citologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/biossíntese , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Interleucina-18/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/biossíntese , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Ratos , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA