Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(11): 4580-4588, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38348822

RESUMO

This work reports the first electrochemical bioplatforms developed for the determination of the total contents of either target miRNA or methylated target miRNA. The bioplatforms are based on the hybridization of the target miRNA with a synthetic biotinylated DNA probe, the capture of the formed DNA/miRNA heterohybrids on the surface of magnetic microcarriers, and their recognition with an antibody selective to these heterohybrids or to the N6-methyladenosine (m6A) epimark. The determination of the total or methylated target miRNA was accomplished by labeling such secondary antibodies with the horseradish peroxidase (HRP) enzyme. In both cases, amperometric transduction was performed on the surface of disposable electrodes after capturing the resulting HRP-tagged magnetic bioconjugates. Because of their increasing relevance in colorectal cancer (CRC) diagnosis and prognosis, miRNA let-7a and m6A methylation were selected. The proposed electrochemical bioplatforms showed attractive analytical and operational characteristics for the determination of the total and m6A-methylated target miRNA in less than 75 min. These bioplatforms, innovative in design and application, were applied to the analysis of total RNA samples extracted from cultured cancer cells with different metastatic profiles and from paired healthy and tumor tissues of patients diagnosed with CRC at different stages. The obtained results demonstrated, for the first time using electrochemical platforms, the potential of interrogating the target miRNA methylation level to discriminate the metastatic capacities of cancer cells and to identify tumor tissues and, in a pioneering way, the potential of the m6A methylation in miRNA let-7a to serve as a prognostic biomarker for CRC.


Assuntos
Técnicas Biossensoriais , Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/análise , Epigenoma , Hibridização de Ácido Nucleico/métodos , Anticorpos/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Prognóstico , Técnicas Biossensoriais/métodos
2.
Biosens Bioelectron ; 249: 115988, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194814

RESUMO

Alzheimer's disease (AD), in addition to being the most common cause of dementia, is very difficult to diagnose, with the 42-amino acid form of Aß (Aß-42) being one of the main biomarkers used for this purpose. Despite the enormous efforts made in recent years, the technologies available to determine Aß-42 in human samples require sophisticated instrumentation, present high complexity, are sample and time-consuming, and are costly, highlighting the urgent need not only to develop new tools to overcome these limitations but to provide an early detection and treatment window for AD, which is a top-challenge. In recent years, micromotor (MM) technology has proven to add a new dimension to clinical biosensing, enabling ultrasensitive detections in short times and microscale environments. To this end, here an electrochemical immunoassay based on polypyrrole (PPy)/nickel (Ni)/platinum nanoparticles (PtNPs) MM is proposed in a pioneering manner for the determination of Aß-42 in left prefrontal cortex brain tissue, cerebrospinal fluid, and plasma samples from patients with AD. MM combines the high binding capacity of their immunorecognition external layer with self-propulsion through the catalytic generation of oxygen bubbles in the internal layer due to decomposition of hydrogen peroxide as fuel, allowing rapid bio-detection (15 min) of Aß-42 with excellent selectivity and sensitivity (LOD = 0.06 ng/mL). The application of this disruptive technology to the analysis of just 25 µL of the three types of clinical samples provides values concordant with the clinical values reported, thus confirming the potential of the MM approach to assist in the reliable, simple, fast, and affordable diagnosis of AD by determining Aß-42.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Polímeros , Técnicas Biossensoriais/métodos , Platina , Pirróis , Peptídeos beta-Amiloides , Imunoensaio/métodos , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/química
3.
Int J Biol Macromol ; 248: 125996, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499706

RESUMO

This work reports a dual immunoplatform for the simultaneous detection of two epithelial glycoproteins of the mucin family, mucin 1 (MUC1) and mucin 16 (MUC16), whose expression is related to adverse prognosis and minimal residual disease (MRD) in colorectal cancer (CRC). The developed immunoplatform involves functionalised magnetic microparticles (MBs), a set of specific antibody pairs (a capture antibody, cAb, and a biotinylated detector antibody b-dAb labelled with a streptavidin-horseradish peroxidase, Strep-HRP, polymer) for each target protein and amperometric detection at dual screen-printed carbon electrodes (SPdCEs) using the hydroquinone (HQ)/horseradish peroxidase (HRP)/H2O2 system. This dual immunoplatform allows, under the optimised experimental conditions, to achieve LOD values of 50 and 1.81 pg mL-1 (or mU mL-1) for MUC1 and MUC16, respectively, and adequate selectivity for the determination of the two targets in the clinic. The developed immunoplatform was employed to analyse CRC cell protein extracts (1.0 µg/determination) with different metastatic potential providing results in agreement with those obtained by blotting technologies but using affordable and applicable point-of-care instruments. This new biotool also emerges competitive in state-of-the-art electrochemical immunoplatforms seeking a compromise among simplicity, reduction of test time and analytical characteristics.


Assuntos
Técnicas Biossensoriais , Neoplasias Colorretais , Humanos , Mucinas , Peróxido de Hidrogênio , Neoplasia Residual , Peroxidase do Rábano Silvestre , Neoplasias Colorretais/diagnóstico , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos
4.
J Pharm Biomed Anal ; 231: 115411, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37094410

RESUMO

Nucleic acid-based analytical bioplatforms have gained importance as diagnostic tests for genomics and as early detection tools for diseases such as cancer. In this context, we report the development of an amperometric bioplatform for the determination of a specific human papillomavirus type 16 (HPV16) sequence. The bioplatform utilizes an immune-nucleic acid hybrid-sandwich assay. A biotinylated RNA capture probe (RNAbCp), complementary to the selected HPV16 target DNA sequence, was immobilised on the surface of streptavidin coated magnetic microbeads (Strep-MBs). The RNA/DNA heteroduplex resulting from the hybridization of the RNAbCP and the HPV16 target sequence was recognised by a commercial antibody that specifically bound to the heteroduplex (AbDNA-RNA). A horseradish-peroxide labeled secondary antibody (antiIgG-HRP) was used for the detection of AbDNA-RNA. Relying on amperometric detection of the resulting HRP-labeled magnetic bioconjugates captured on screen-printed electrodes (SPCEs) in the presence of H2O2 and hydroquinone (HQ), the biotool achieved a low limit of detection (0.5 pM) for the synthetic HPV16 target DNA. In addition, the developed bioplatform was able to discriminate between HPV16 positive and negative human cancer cells using only 25 ng of amplified DNA in a test time of 45 min.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Papillomavirus Humano , Carcinógenos , Peróxido de Hidrogênio , DNA , RNA , Anticorpos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos
5.
Anal Bioanal Chem ; 415(11): 2045-2057, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36344668

RESUMO

The glycosylation status of proteins is increasingly used as biomarker to improve the reliability in the diagnosis and prognosis of diseases as relevant as cancer. This feeds the need for tools that allow its simple and reliable analysis and are compatible with applicability in the clinic. With this objective in mind, this work reports the first bioelectronic immunoplatforms described to date for the determination of glycosylated haptoglobin (Hp) and the simultaneous determination of total and glycosylated Hp. The bioelectronic immunoplatform is based on the implementation of non-competitive bioassays using two different antibodies or an antibody and a lectin on the surface of commercial magnetic microcarriers. The resulting bioconjugates are labeled with the horseradish peroxidase (HRP) enzyme, and after their magnetic capture on disposable electroplatforms, the amperometric transduction using the H2O2/hydroquinone (HQ) system allows the single or multiple detection. The developed immunoplatform achieves limits of detection (LODs) of 0.07 and 0.46 ng mL-1 for total and glycosylated Hp in buffer solution, respectively. The immunoplatform allows accurate determination using simple and relatively short protocols (approx. 75 min) of total and glycosylated Hp in the secretomes of in vitro-cultured colorectal cancer (CRC) cells with different metastatic potentials, which is not feasible, due to lack of sensitivity, by means of some commercial ELISA kits and Western blot methodology.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Haptoglobinas , Peróxido de Hidrogênio , Reprodutibilidade dos Testes , Ensaio de Imunoadsorção Enzimática , Anticorpos , Técnicas Biossensoriais/métodos
6.
Anal Chim Acta ; 1231: 340397, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36220288

RESUMO

Potassium ion channels are expressed on the cell membranes, implicated in wide variety of cell functions and intimately linked to cancer cell behaviors. This work reports the first bioplatform described to date allowing simple and rapid detection of ion channel activity and the effect of their inhibitors in cancer cells. The methodology involves interrogation of the channel of interest from cells specifically captured on magnetic immunoconjugates using specific detection antibodies that are labeled with horseradish peroxidase enzyme. The channel activity is reflected by an amperometric signal transduction of the resulting magnetic bioconjugates onto screen-printed carbon electrodes. The bioplatform feasibility was proven for the detection of the Kv channels in U87 human glioblastoma cells and their blocking by scorpion venom KAaH1 and KAaH2 peptides. The obtained results confirm the high sensitivity (detection of 5 U87 cells⋅mL-1 and 0.06 µg mL-1 of KAaH2) of the proposed bioplatform and their versatility to detect both potassium channel activity and their potential inhibitors, in a given cancer cell line, with high sensitivity in a simple and fast way. This bioplatform presents potential applications in cancer and theranostic of channelopathies.


Assuntos
Imunoconjugados , Neoplasias , Venenos de Escorpião , Carbono , Peroxidase do Rábano Silvestre , Humanos , Canais Iônicos , Neoplasias/tratamento farmacológico , Peptídeos , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Canais de Potássio , Venenos de Escorpião/farmacologia
7.
Mikrochim Acta ; 189(4): 143, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35286499

RESUMO

A dual immunosensor is reported for the simultaneous determination of two important immunity-related cytokines: BAFF (B cell activation factor) and APRIL (a proliferation-induced signal). Sandwich-type immunoassays with specific antibodies (cAbs) and a strategy for signal amplification based on labelling the detection antibodies (dAbs) with binary MoS2/MWCNTs nanostructures and using horseradish peroxidase (HRP) were implemented. Amperometric detection was carried out at screen-printed dual carbon electrodes (SPdCEs) through the hydroquinone HQ/H2O2 system. The developed dual immunosensor provided limit of detection (LOD) of 0.08 and 0.06 ng mL-1 for BAFF and APRIL, respectively, and proved to be useful for the determination of both cytokines in cancer cell lysates and serum samples from patients diagnosed with autoimmune diseases and cancer. The obtained results agreed with those found using ELISA methodologies.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Anticorpos , Técnicas Biossensoriais/métodos , Proliferação de Células , Citocinas , Técnicas Eletroquímicas , Humanos , Peróxido de Hidrogênio , Imunoensaio/métodos , Molibdênio
8.
Anal Bioanal Chem ; 414(1): 399-412, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33635388

RESUMO

Metastasis is responsible for about 90% of cancer-associated deaths. In the context of solid tumors, the low oxygen concentration in the tumor microenvironment (hypoxia) is one of the key factors contributing to metastasis. Tumor cells adapt to these conditions by overexpressing certain proteins such as programmed death ligand 1 (PD-L1) and hypoxia-inducible factor 1 alpha (HIF-1α). However, the determination of these tumor hypoxia markers that can be used to follow-up tumor progression and improve the efficiency of therapies has been scarcely addressed using electrochemical biosensors. In this work, we report the first electrochemical bioplatform for the determination of PD-L1 as well as the first one allowing its simultaneous determination with HIF-1α. The target proteins were captured and enzymatically labeled on magnetic microbeads and amperometric detection was undertaken on the surface of screen-printed dual carbon electrodes using the hydrogen peroxide/peroxidase/hydroquinone system. Sandwich immunoassays were implemented for both the HIF-1α and PD-L1 sensors and the analytical characteristics were evaluated providing LOD values of 86 and 279 pg mL-1 for the amperometric determination of PD-L1 and HIF-1α standards, respectively. The developed electrochemical immunoplatforms are competitive versus the only electrochemical immunosensor reported for the determination of HIF-1α and the "gold standard" ELISA methodology for the single determination of both proteins in terms of assay time, compatibility with the simultaneous determination of both proteins making their use suitable for untrained users at the point of attention. The dual amperometric immunosensor was applied to the simultaneous determination of HIF-1α and PD-L1 in cancer cell lysates. The analyses lasted only 2 h and just 0.5 µg of the sample was required.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Biomarcadores Tumorais/análise , Técnicas Biossensoriais/métodos , Humanos , Hipóxia , Imunoensaio , Hipóxia Tumoral
9.
Anal Chim Acta ; 1182: 338946, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34602192

RESUMO

This work reports the first electrochemical bioplatform developed for the multidetection of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in DNA, DNA N6-methyladenine (6mA) and RNA N6-methyladenosine (m6A) methylations at global level. Direct competitive immunoassays were implemented on the surface of magnetic beads (MBs) and optimized for the single amperometric determination of different targets varying in length, sequence and number of methylations on screen-printed carbon electrodes. After evaluating the sensitivity and selectivity of such determinations and the confirmation of no cross-reactivity, a multiplexed disposable platform allowing the simultaneous determination of the mentioned four methylation events in only 45 min has been prepared. The multiplexed bioplatform was successfully applied to the determination of m6A in cellular total RNA and of 5-mC, 5-hmC and 6mA in genomic DNA extracted from tissues. The developed bioplatform showed its usefulness to discriminate the aggressiveness of cancerous cells and between healthy and tumor tissues of colorectal cancer patients.


Assuntos
Ácidos Nucleicos , Adenosina , Humanos , Fenômenos Magnéticos , Metilação , RNA
10.
Anal Methods ; 13(31): 3471-3478, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34286719

RESUMO

This work reports the first amperometric immunosensor for the simultaneous determination of four fertility-related hormones in saliva: progesterone (P4), luteinizing hormone (LH), estradiol (E2), and prolactin (PRL). The immune platform involves direct competitive (P4 and E2), and sandwich (LH and PRL) assays implemented onto functionalized magnetic microbeads (MBs). The amperometric transduction was performed upon placing the MBs-immunoconjugates onto each of the four working electrodes of the SPCE array (SP4CEs) and applying a detection potential of -0.20 V (vs. Ag pseudo-reference electrode) using the H2O2/hydroquinone (HQ) system. The achieved analytical and operational characteristics of the developed multiplexed immunoplatform showed a sensitivity that allows the determination of these hormones in saliva, and an adequate selectivity to analyse complex clinical samples. The bioplatform was employed for the determination of the set of four hormones in human saliva samples collected from individuals with different hormonal profiles. The results obtained using a conventional potentiostat were compared with those provided employing a novel low-cost custom-designed and field-portable quadruple potentiostat. Similar results were found which also agreed with those obtained by applying ELISA methods for the determination of single hormones.


Assuntos
Técnicas Biossensoriais , Saliva , Fertilidade , Hormônios , Humanos , Peróxido de Hidrogênio , Imunoensaio
11.
Biosensors (Basel) ; 11(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205541

RESUMO

A magnetic beads (MB)-involved amperometric immunosensor for the determination of ST2, a member of the IL1 receptor family, is reported in this work. The method utilizes a sandwich immunoassay and disposable screen-printed carbon electrodes (SPCEs). Magnetic immunoconjugates built on the surface of carboxylic acid-microsized magnetic particles (HOOC-MBs) were used to selectively capture ST2. A biotinylated secondary antibody further conjugated with a streptavidin peroxidase conjugate (Strep-HRP) was used to accomplish the sandwiching of the target protein. The immune platform exhibits great selectivity and a low limit of detection (39.6 pg mL-1) for ST2, allowing the determination of soluble ST2 (sST2) in plasma samples from healthy individuals and patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) in only 45 min once the immunoconjugates have been prepared. The good correlation of the obtained results with those provided by an ELISA kit performed using the same immunoreagents demonstrates the potential of the developed strategy for early diagnosis and/or prognosis of the fatal PDAC disease.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Neoplasias/diagnóstico , Anticorpos , Carbono , Técnicas Eletroquímicas , Eletrodos , Ensaio de Imunoadsorção Enzimática , Humanos , Peróxido de Hidrogênio , Limite de Detecção , Magnetismo
12.
Talanta ; 225: 122054, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592776

RESUMO

Matrix metalloproteinase 9 (MMP-9) is a zinc-dependent endopeptidase that promotes angiogenesis, tumor growth, metastasis and cell invasion through the degradation of extracellular matrix. This work reports a magnetic microbeads (MBs)-based sandwich immunoassay for the amperometric determination of MMP-9 at screen-printed carbon electrodes (SPCEs). The suitable capture antibody (cAb) is immobilized onto carboxylic MBs to selectively capture the antigen which is sandwiched with a biotinylated detector antibody (biotin-dAb) further conjugated with a commercial streptavidin-horseradish peroxidase (Strep-HRP) polymer. This immunoplatform provides great analytical characteristics in terms of selectivity and sensitivity, achieving a LOD value of 2.4 pg mL-1 for standards in buffered solutions. Although this value is similar to those reported for some other approaches described so far, the method described here is simpler involving a single 30 min incubation step which makes it ideal for automation or implementation in POC devices. Moreover, the method was assayed for the accurate determination of endogenous MMP-9 in both cancer cell lysates and serum samples of patients diagnosed with different subtypes of breast cancer (BC) after a simple dilution. The results obtained show that the disposable and affordable immunoplatform developed is able not only to discriminate BC patients from healthy individuals but also to do it for the worst outcome triple negative (TNBC) subtype.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Neoplasias da Mama/diagnóstico , Técnicas Eletroquímicas , Eletrodos , Humanos , Imunoensaio , Limite de Detecção , Metaloproteinase 9 da Matriz
13.
Biosens Bioelectron ; 171: 112708, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049562

RESUMO

This work describes the preparation of an immunoplatform for the sensitive and selective determination of N6-methyladenosine (m6A). The simple and fast protocol involves for the first time the use of micromagnetic immunoconjugates to establish a direct competitive assay between the m6A target and a biotinylated RNA oligomer bearing a single m6A enzymatically labelled with a commercial conjugate of streptavidin-peroxidase (Strep-HRP) as tracer. The cathodic current change measured in the presence of H2O2/hydroquinone (HQ) at screen-printed carbon electrodes (SPCEs) upon surface capturing the magnetic bioconjugates is inversely proportional to the m6A target concentration. After evaluating the effect of key variables, the analytical characteristics were established for the determination of three different targets: the N6-methyladenosine-5'-triphosphate (m6ATP) ribonucleotide, a short synthetic RNA oligomer bearing a single m6A and the positive control provided in a commercial colorimetric kit for m6A-RNA quantification. The obtained results show that this immunoplatform is competitive with other methods reported to date, achieving an improved sensitivity (limit of detection of 0.9 pM for the short synthetic oligomer) using a much simpler and faster protocol (~1 h) and disposable electrodes for the transduction. Furthermore, the applicability for discriminating the metastatic potential of cancer cells by directly analyzing a small amount of raw total RNA without enriching or fragmenting was also preliminary assessed.


Assuntos
Técnicas Biossensoriais , Neoplasias , Adenosina/análogos & derivados , Peróxido de Hidrogênio , Limite de Detecção , Fenômenos Magnéticos , Microesferas
14.
Mikrochim Acta ; 187(8): 444, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661767

RESUMO

The preparation of an integrated biosensor for the easy, fast, and sensitive determination of miRNAs is described based on a direct hybridization format and a label-free voltammetric detection. The biosensor involves a disposable carbon electrode substrate doubly nanostructured with reduced graphene oxide (rGO) and AuNPs modified with pyrene carboxylic acid (PCA) and 6-ferrocenylhexanethiol (Fc-SH), respectively. A synthetic amino terminated DNA capture probe was covalently immobilized on the CO2H moieties of PCA/rGO, while Fc-SH was used as a signaling molecule. Differential pulse voltammetry was employed to record the decrease in the oxidation peak current of Fc after the hybridization due to the hindering of the electron transfer upon the formation of the DNA-RNA duplex on the electrode surface. The stepwise biosensor preparation was characterized by surface and electrochemical techniques showing the role played by each biosensor component as well as the reliability of the target miRNA determination. The determination of the oncogene miRNA-21 synthetic target allowed quantification in the low femtomolar range (LOD of 5 fM) with a high discrimination of single-base mismatched sequences in a single 30-min incubation step. The bioplatform allowed the determination of the target miRNA in a small amount of total RNA extracted from breast cancer (BC) cells or directly in serum samples collected from BC patients without the need for prior extraction, purification, amplification, or reverse transcription of the genetic material and with no matrix effect. Graphical abstract.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , MicroRNAs/sangue , Neoplasias da Mama/sangue , DNA/química , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Ouro/química , Grafite/química , Humanos , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/genética , Nanopartículas Metálicas/química , MicroRNAs/genética , Hibridização de Ácido Nucleico
15.
Anal Chem ; 92(7): 5604-5612, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32073832

RESUMO

This work reports the first bioplatform able to determine electrochemically 5-hydroxymethylcytosine (5-hmC) methylation events at localized sites and single-base sensitivity. The described bioplatform relies on a specific antibody (anti-5-hmC), further conjugated with commercial bioreagents loaded with multiple horseradish peroxidase (HRP) molecules, recognizing the epimark in a target DNA, captured through hybridization onto streptavidin-magnetic microbeads (Strep-MBs) modified with a complementary DNA capture probe. The electrochemical detection is performed by amperometry (-0.20 V vs Ag pseudoreference electrode) at disposable screen-printed carbon electrodes (SPCEs) in the presence of H2O2/hydroquinone (HQ) upon magnetic capture of the modified MBs onto the SPCE. The use of the commercial bioreagents ProtA-polyHRP80 and Histostar, very scarcely explored so far in electrochemical biosensors, provides high sensitivities for a synthetic target DNA sequence with a unique 5-hmC in the promoter region of MGMT tumor suppressor gene. Amplification factors of 43.6 and 55.2 were achieved using ProtA-polyHRP80 or Histostar, respectively, compared to the conventional secondary antibody labeling. This amplification was crucial to detect methylation events at single-nucleotide resolution achieving limits of detection (LODs) of 23.0 and 13.2 pM, respectively, without any target DNA amplification. The ProtA-polyHRP80-based bioplatform, selected as a compromise between sensitivity and cost per determination, exhibited full discrimination toward the target 5-hmC against the closely related 5-mC. In addition, the bioplatform detected 5-hmC at the regional level (MGMT promoter region) in just 10 ng of genomic DNA (gDNA, ∼2700 genomes) extracted from cancer cells and tissues from colorectal cancer (CRC) patients within 60 min.


Assuntos
Metilação de DNA , Eletroquímica/métodos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Linhagem Celular Tumoral , Humanos , Limite de Detecção
16.
Anal Chim Acta ; 1104: 188-198, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32106951

RESUMO

A disposable enzyme-free biosensing platform for the sensitive and selective voltammetric determination of miRNAs is reported. The bioplatform implies a sandwich-type hybridization configuration involving the use of two synthetic DNA probes that hybridize contiguously with the target miRNA-21. A thiolated capture probe was immobilized through thiol chemistry on disposable carbon electrodes modified with a hybrid nanomaterial composed of reduced graphene oxide (rGO) and gold nanoparticles (AuNPs). A biotinylated detection probe was conjugated with ferrocene-capped AuNPs modified with streptavidin (Fc-AuNPs-Strep) which were used as labeling nanocarriers. The extent of the hybridization event was followed by differential pulse voltammetric measurement of the Fc oxidation peak. Under the optimized conditions, the developed biosensor provides attractive characteristics for the determination of the synthetic target miRNA, with a linear range between 10 fM and 2 pM and a limit of detection (LOD) of 5 fM, fully discrimination towards a highly homologous miRNA (with just one mismatched base) and a storage stability of at least two months. The biosensor was able to determine accurately the target miRNA directly in scarcely diluted serum from breast cancer (BC) patients with no need for a previous total RNA (RNAt) extraction and in a very small amount of RNAt extracted from breast adenocarcinoma cells without the need for amplification or reverse transcription to complementary DNA.


Assuntos
Técnicas Biossensoriais/métodos , Neoplasias da Mama/sangue , Ácidos Nucleicos Livres/sangue , Técnicas Eletroquímicas/métodos , MicroRNAs/sangue , Detecção Precoce de Câncer , Feminino , Ouro/química , Humanos , Limite de Detecção , Células MCF-7 , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico , Estreptavidina/química
17.
Anal Bioanal Chem ; 412(24): 6177-6188, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31989193

RESUMO

Proteases are involved in cancer' taking part in immune (dis)regulation, malignant progression and tumour growth. Recently, it has been found that expression levels of one of the members of the serine protease family, trypsin, is upregulated in human cancer cells of several organs, being considered as a specific cancer biomarker. Considering the great attention that electrochemical peptide sensors have nowadays, in this work, we propose a novel electroanalytical strategy for the determination of this important biomolecule. It implies the immobilization of a short synthetic peptide sequence, dually labelled with fluorescein isothiocyanate (FITC) and biotin, onto neutravidin-modified magnetic beads (MBs), followed by the peptide digestion with trypsin. Upon peptide disruption, the modified MBs were incubated with a specific fluorescein Fab fragment antibody labelled with horseradish peroxidase (HRP-antiFITC) and magnetically captured on the surface of a screen-printed carbon electrode (SPCE), where amperometric detection was performed using the hydroquinone (HQ)/HRP/H2O2 system. The biosensor exhibited a good reproducibility of the measurements (RSD 3.4%, n = 10), and specificity against other proteins and proteases commonly found in biological samples. This work reports the first quantitative data so far on trypsin expression in human cell lysates. The developed bioplatform was used for the direct determination of this protease in lysates from pancreatic cancer, cervix carcinoma and kidney cells in only 3 h and 30 min using low amounts (~ 0.1 µg) of raw extracts. Graphical abstract.


Assuntos
Técnicas Eletroquímicas/métodos , Metástase Neoplásica , Neoplasias Pancreáticas/enzimologia , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Técnicas Biossensoriais , Calibragem , Humanos , Oxirredução , Neoplasias Pancreáticas/patologia , Reprodutibilidade dos Testes
18.
Anal Bioanal Chem ; 412(21): 5031-5041, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31745609

RESUMO

This paper reports a simple electrochemical strategy for the determination of microRNAs (miRNAs) using a commercial His-Tag-Zinc finger protein (His-Tag-ZFP) that binds preferably (but non-sequence specifically) RNA hybrids over ssRNAs, ssDNAs, and dsDNAs. The strategy involves the use of magnetic beads (His-Tag-Isolation-MBs) as solid support to capture the conjugate formed in homogenous solution between His-Tag-ZFP and the dsRNA homohybrid formed between the target miRNA (miR-21 selected as a model) and a biotinylated synthetic complementary RNA detector probe (b-RNA-Dp) further conjugated with a streptavidin-horseradish peroxidase (Strep-HRP) conjugate. The electrochemical detection is carried out by amperometry at disposable screen-printed carbon electrodes (SPCEs) (- 0.20 V vs Ag pseudo-reference electrode) upon magnetic capture of the resultant magnetic bioconjugates and H2O2 addition in the presence of hydroquinone (HQ). The as-prepared biosensor exhibits a dynamic concentration range from 3.0 to 100 nM and a detection limit (LOD) of 0.91 nM for miR-21 in just ~ 2 h. An acceptable discrimination was achieved between the target miRNA and other non-target nucleic acids (ssDNA, dsDNA, ssRNA, DNA-RNA, miR-122, miR-205, and single central- or terminal-base mismatched sequences). The biosensor was applied to the analysis of miR-21 from total RNA (RNAt) extracted from epithelial non-tumorigenic and adenocarcinoma breast cells without target amplification, pre-concentration, or reverse transcription steps. The versatility of the methodology due to the ZFP's non-sequence-specific binding behavior makes it easily extendable to determine any target RNA only by modifying the biotinylated detector probe.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , MicroRNAs/análise , Dedos de Zinco , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Limite de Detecção
19.
Biomolecules ; 9(9)2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533374

RESUMO

Herein, and in contrast to current production of anti-Zika virus antibodies, we propose a semi-combinatorial virtual strategy to select short peptides as biomimetic antibodies/binding agents for the detection of intact Zika virus (ZIKV) particles. The virtual approach was based on generating different docking cycles of tetra, penta, hexa, and heptapeptide libraries by maximizing the discrimination between the amino acid motif in the ZIKV and dengue virus (DENV) envelope protein glycosylation site. Eight peptides, two for each length (tetra, penta, hexa, and heptapeptide) were then synthesized and tested vs. intact ZIKV particles by using a direct enzyme linked immunosorbent assay (ELISA). As a reference, we employed a well-established anti-ZIKV antibody, the antibody 4G2. Three peptide-based assays had good detection limits with dynamic range starting from 105 copies/mL of intact ZIKV particles; this was one order magnitude lower than the other peptides or antibodies. These three peptides showed slight cross-reactivity against the three serotypes of DENV (DENV-1, -2, and -3) at a concentration of 106 copies/mL of intact virus particles, but the discrimination between the DENV and ZIKV was lost when the coating concentration was increased to 107 copies/mL of the virus. The sensitivity of the peptides was tested in the presence of two biological matrices, serum and urine diluted 1:10 and 1:1, respectively. The detection limits decreased about one order of magnitude for ZIKV detection in serum or urine, albeit still having for two of the three peptides tested a distinct analytical signal starting from 106 copies/mL, the concentration of ZIKV in acute infection.


Assuntos
Peptidomiméticos/síntese química , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Infecção por Zika virus/diagnóstico , Zika virus/isolamento & purificação , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Simulação por Computador , Vírus da Dengue/química , Vírus da Dengue/imunologia , Vírus da Dengue/isolamento & purificação , Desenho de Fármacos , Glicosilação , Humanos , Limite de Detecção , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Sorogrupo , Soro/virologia , Urina/virologia , Zika virus/química , Zika virus/imunologia , Infecção por Zika virus/imunologia
20.
Sensors (Basel) ; 19(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480367

RESUMO

Nowadays, analyzing circulating tumor DNA (ctDNA), a very small part of circulating free DNA (cfDNA) carried by blood, is considered to be an interesting alternative to conventional single-site tumor tissue biopsies, both to assess tumor burden and provide a more comprehensive snapshot of the time-related and spatial heterogeneity of cancer genetic/epigenetic scenery. The determination of ctDNA and/or mapping its characteristic features, including tumor-specific mutations, chromosomal aberrations, microsatellite alterations, and epigenetic changes, are minimally invasive, powerful and credible biomarkers for early diagnosis, follow-up, prediction of therapy response/resistance, relapse monitoring, and tracking the rise of new mutant subclones, leading to improved cancer outcomes This review provides an outline of advances published in the last five years in electrochemical biosensing of ctDNA and surrogate markers. It emphasizes those strategies that have been successfully applied to real clinical samples. It highlights the unique opportunities they offer to shift the focus of cancer patient management methods from actual decision making, based on clinic-pathological features, to biomarker-driven treatment strategies, based on genotypes and customized targeted therapies. Also highlighted are the unmet hurdles and future key points to guide these devices in the development of liquid biopsy cornerstone tools in routine clinical practice for the diagnosis, prognosis, and therapy response monitoring in cancer patients.


Assuntos
Biomarcadores Tumorais/sangue , Técnicas Biossensoriais/métodos , DNA Tumoral Circulante/sangue , Técnicas Eletroquímicas/métodos , Neoplasias/genética , Técnicas Biossensoriais/instrumentação , DNA Tumoral Circulante/análise , DNA Viral/sangue , Técnicas Eletroquímicas/instrumentação , Humanos , Biópsia Líquida , Mutação , Neoplasias/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA