Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 64(7): 2537-49, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25735732

RESUMO

Obesity and diabetes are characterized by increased inflammation reflecting disordered control of innate immunity. We reveal a local intestinal intraepithelial lymphocyte (IEL)-GLP-1 receptor (GLP-1R) signaling network that controls mucosal immune responses. Glp1r expression was enriched in intestinal IEL preparations and copurified with markers of Tαß and Tγδ IELs, the two main subsets of intestinal IELs. Exendin-4 increased cAMP accumulation in purified IELs and reduced the production of cytokines from activated IELs but not from splenocytes ex vivo. These actions were mimicked by forskolin, absent in IELs from Glp1r(-/-) mice, and attenuated by the GLP-1R agonist exendin (9-39) consistent with a GLP-1R-dependent mechanism of action. Furthermore, Glp1r(-/-) mice exhibited dysregulated intestinal gene expression, an abnormal representation of microbial species in feces, and enhanced sensitivity to intestinal injury following administration of dextran sodium sulfate. Bone marrow transplantation using wild-type C57BL/6 donors normalized expression of multiple genes regulating immune function and epithelial integrity in Glp1r(-/-) recipient mice, whereas acute exendin-4 administration robustly induced the expression of genes encoding cytokines and chemokines in normal and injured intestine. Taken together, these findings define a local enteroendocrine-IEL axis linking energy availability, host microbial responses, and mucosal integrity to the control of innate immunity.


Assuntos
Mucosa Intestinal/imunologia , Linfócitos/imunologia , Receptores de Glucagon/agonistas , Receptores de Glucagon/fisiologia , Animais , Citocinas/análise , Exenatida , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/farmacologia , Transdução de Sinais , Peçonhas/farmacologia
2.
Inflamm Bowel Dis ; 21(2): 297-306, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25590952

RESUMO

BACKGROUND: Adherent-invasive Escherichia coli (AIEC) colonization has been strongly implicated in the pathogenesis of Crohn's disease. Environmental triggers such as vitamin D deficiency have emerged as key factors in the pathogenesis of inflammatory bowel diseases. The aim of this study was to investigate the effects of 1,25(OH)2D3 on AIEC infection-induced changes in vivo and in vitro. METHODS: Barrier function was assessed in polarized epithelial Caco-2-bbe cells grown in medium with or without vitamin D and challenged with AIEC strain LF82. Weaned C57BL/6 mice were fed either a vitamin D-sufficient or -deficient diet for 5 weeks and then infected with AIEC, in the absence and presence of low-dose dextran sodium sulphate. Disease severity was assessed by histological analysis and in vivo intestinal permeability assay. Presence of invasive bacteria was assessed by transmission electron microscopy. RESULTS: Caco-2-bbe cells incubated with 1,25(OH)2D3 were protected against AIEC-induced disruption of transepithelial electrical resistance and tight-junction protein redistribution. Vitamin D-deficient C57BL/6 mice given a course of 2% dextran sodium sulphate exhibited pronounced epithelial barrier dysfunction, were more susceptible to AIEC colonization, and showed exacerbated colonic injury. Transmission electron microscopy of colonic tissue from infected mice demonstrated invasion of AIEC and fecal microbiome analysis revealed shifts in microbial communities. CONCLUSIONS: These data show that vitamin D is able to mitigate the deleterious effects of AIEC on the intestinal mucosa, by maintaining intestinal epithelial barrier homeostasis and preserving tight-junction architecture. This study highlights the association between vitamin D status, dysbiosis, and Crohn's disease.


Assuntos
Calcitriol/farmacologia , Colite/etiologia , Doença de Crohn/etiologia , Modelos Animais de Doenças , Infecções por Escherichia coli/etiologia , Escherichia coli/patogenicidade , Mucosa Intestinal/patologia , Deficiência de Vitamina D/fisiopatologia , Animais , Apoptose , Aderência Bacteriana/efeitos dos fármacos , Western Blotting , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Colite/metabolismo , Colite/patologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Sulfato de Dextrana/farmacologia , Condutividade Elétrica , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Feminino , Imunofluorescência , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Humanos , Técnicas Imunoenzimáticas , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deficiência de Vitamina D/complicações
3.
Shock ; 43(5): 483-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25608140

RESUMO

Intestinal epithelia regulate barrier integrity when challenged by inflammation, oxidative stress, and microbes. Transforming growth factor-ß1 (TGF-ß1) is a cytokine with known beneficial effects on intestinal epithelia, including barrier enhancement, after exposure to proinflammatory cytokines and infectious agents. The aim of this study was to determine whether TGF-ß1 directly protects intestinal epithelia during hypoxia-reoxygenation (HR). Intestinal epithelial monolayers (T84, Caco-2) were exposed to either hypoxia (1% O2, 1 h) or oxidative stress (hydrogen peroxide, 1 mM), followed by normoxic atmosphere for different time points in the absence and presence of varying concentrations of TGF-ß1. Transepithelial electrical resistance (TER) assessed barrier function, with RNA extracted for reverse transcription polymerase chain reaction analysis of GPx-1, HIF-1, heme-oxygenase-1 (HO-1), and NOX-1. In some experiments, intestinal epithelia were exposed to enterohemorrhagic Escherichia coli (EHEC) O157:H7 during the reoxygenation period and TER recorded 7 h after the infectious challenge. Hypoxia-reoxygenation significantly decreased TER in intestinal epithelia compared with normoxic controls. Transforming growth factor-ß1 pretreatment ameliorated HR-induced epithelial barrier dysfunction in T84 (at 1 - 3 h) and Caco-2 (1 h) monolayers. Transforming growth factor-ß1 preserved barrier integrity for up to 16 h after challenge with hydrogen peroxide. In TGF-ß1-treated epithelial monolayers, only HO-1 mRNA significantly increased after HR (P < 0.05 vs. normoxic controls). The EHEC-induced epithelial barrier dysfunction was significantly worsened by intestinal HR (P < 0.05 vs. normoxia-EHEC-infected cells), but this was not protected by TGF-ß1 pretreatment. Transforming growth factor-ß1 preserves loss of epithelial barrier integrity caused by the stress of HR via a mechanism that may involve the upregulation of HO-1 transcription. Targeted treatment with TGF-ß could lead to novel therapies in enteric diseases characterized by HR injury.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Estresse Oxidativo , Fator de Crescimento Transformador beta1/farmacologia , Células CACO-2 , Hipóxia Celular , Citocinas/metabolismo , Impedância Elétrica , Escherichia coli Êntero-Hemorrágica/patogenicidade , Células Epiteliais/efeitos dos fármacos , Epitélio/metabolismo , Expressão Gênica , Heme Oxigenase-1/metabolismo , Humanos , Peróxido de Hidrogênio/química , Enteropatias/metabolismo , Mucosa Intestinal/patologia , Oxigênio/química , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Fatores de Tempo
4.
J Nutr ; 144(11): 1725-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25143376

RESUMO

BACKGROUND: Few studies have focused on the ability of prebiotics to prevent pathogen-induced cellular changes or alter the composition of the intestinal microbiota in complimentary relevant cell and animal models of inflammatory bowel disease. OBJECTIVE: The objective of this study was to determine if pretreatment with inulin and a short-chain fructo-oligosaccharide (sc-FOS) prevents enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection in Caco2-bbe epithelial cells and what effect 10% wt:v sc-FOS or inulin has on C57BL/6 mice under sham conditions or pretreatment with prebiotics before Citrobacter rodentium infection (10(8) colony-forming units). METHODS: Actin rearrangement and tight junction protein (zona occludin-1) were examined with immunofluorescence. Barrier function was assessed by a fluorescent probe and by measuring transepithelial electrical resistance (TER). Alterations in cytokine gene expression and microbiome were assessed with quantitative reverse transcriptase-polymerase chain reaction and fluorescence in situ hybridization. Short-chain fatty acids (SCFAs) were measured by GC. RESULTS: sc-FOS added to monolayers altered actin polymerization without affecting TER or permeability to a fluorescein isothiocyanate (FITC) probe, whereas inulin increased TER (P < 0.005) and altered actin arrangement without affecting FITC permeability. Neither prebiotic attenuated EHEC-induced decreases in barrier function. Prebiotics increased interleukin 10 (Il10) and transforming growth factor-ß (Tgfß) cytokine responses alone (P < 0.05) or with EHEC O157:H7 infection (P < 0.05) in vitro. Increases in tumor necrosis factor-α (Tnfα) (P < 0.05) and decreases in chemokine CXC motif ligand 8 (Cxcl8) (P < 0.05) expression were observed with prebiotic treatment prior to EHEC infection. No differences were noted in barrier function or cytokine responses in the absence or presence of C. rodentium in vivo. Alterations in microbiome were evident at 6 d and 10 d postinfection in treatment groups, but a change in C. rodentium load was not observed. Inulin and sc-FOS (P < 0.05) increased fecal SCFAs in the absence of infection. CONCLUSION: This study provides new insights as to how prebiotics act in complementary in vitro and in vivo models of intestinal injury.


Assuntos
Infecções por Enterobacteriaceae/complicações , Escherichia coli O157 , Inflamação/tratamento farmacológico , Inulina/farmacologia , Oligossacarídeos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células CACO-2 , Citrobacter rodentium , Colite/tratamento farmacológico , Colite/microbiologia , Fezes/microbiologia , Feminino , Humanos , Inulina/química , Camundongos , Camundongos Endogâmicos C57BL , Oligossacarídeos/química , Prebióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA