Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062944

RESUMO

Polysulfides are endogenously produced in mammals and generally associated with protective functions. Our aim was to investigate the effect of dimethyl trisulfide (DMTS) in a mouse model of acute stress. DMTS activates transient receptor potential ankyrin 1 (TRPA1) channels and leads to neuropeptide release, potentially that of substance P (SP). We hypothesize that DMTS might inhibit the degrading enzymes of endocannabinoids, so this system was also investigated as another possible pathway for mediating the effects of DMTS. Trpa1 gene wild-type (WT) and knockout (KO) mice were used to confirm the role of the TRPA1 ion channel in mediating the effects of DMTS. C57BL/6J, NK1 gene KO, and Tac1 gene KO mice were used to evaluate the effect of DMTS on the release and expression of SP. Some C57BL/6J animals were treated with AM251, an inhibitor of the cannabinoid CB1 receptor, to elucidate the role of the endocannabinoid system in these processes. Open field test (OFT) and forced swim test (FST) were performed in each mouse strain. A tail suspension test (TST) was performed in Trpa1 WT and KO animals. C-FOS immunohistochemistry was carried out on Trpa1 WT and KO animals. The DMTS treatment increased the number of highly active periods and decreased immobility time in the FST in WT animals, but had no effect on the Trpa1 KO mice. The DMTS administration induced neuronal activation in the Trpa1 WT mice in the stress-related brain areas, such as the locus coeruleus, dorsal raphe nucleus, lateral septum, paraventricular nucleus of the thalamus, and paraventricular nucleus of the hypothalamus. DMTS may have a potential role in the regulation of stress-related processes, and the TRPA1 ion channel may also be involved in mediating the effects of DMTS. DMTS can be an ideal candidate for further study as a potential remedy for stress-related disorders.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sulfetos , Canal de Cátion TRPA1 , Animais , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Camundongos , Sulfetos/farmacologia , Masculino , Substância P/metabolismo , Estresse Psicológico/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo
2.
Biomedicines ; 11(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37626651

RESUMO

Somatostatin (SST) released from capsaicin-sensitive sensory nerves in response to stimulation exerts systemic anti-inflammatory, analgesic actions. Its elevation correlates with the extent of tissue injury. We measured plasma SST alterations during spine operations (scoliosis and herniated disc) to determine whether its release might be a general protective mechanism during painful conditions. Sampling timepoints were baseline (1), after: soft tissue retraction (2), osteotomy (3), skin closure (4), the following morning (5). Plasma SST-like immunoreactivity (SST-LI) determined by radioimmunoassay was correlated with pain intensity and the correction angle (Cobb angle). In scoliosis surgery, postoperative pain intensity (VAS 2.) 1 day after surgery significantly increased (from 1.44 SEM ± 0.68 to 6.77 SEM ± 0.82, p = 0.0028) and positively correlated with the Cobb angle (p = 0.0235). The baseline Cobb degree negatively correlated (p = 0.0459) with the preoperative SST-LI. The plasma SST-LI significantly increased in fraction 3 compared to the baseline (p < 0.05), and significantly decreased thereafter (p < 0.001). In contrast, in herniated disc operations no SST-LI changes were observed in either group. The VAS decreased after surgery both in the traditional (mean 6.83 to 2.29, p = 0.0005) and microdiscectomy groups (mean 7.22 to 2.11, p = 0.0009). More extensive and destructive scoliosis surgery might cause greater tissue damage with greater pain (inflammation), which results in a significant SST release into the plasma from the sensory nerves. SST is suggested to be involved in an endogenous postoperative analgesic (anti-inflammatory) mechanism.

3.
Front Physiol ; 14: 1180896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351262

RESUMO

Introduction: Previous studies have established that endogenous inorganic polysulfides have significant biological actions activating the Transient Receptor Potential Ankyrin 1 (TRPA1) receptor. Organic polysulfides exert similar effects, but they are much more stable molecules, therefore these compounds are more suitable as drugs. In this study, we aimed to better understand the mechanism of action of organic polysulfides by identification of their binding site on the TRPA1 receptor. Methods: Polysulfides can readily interact with the thiol side chain of the cysteine residues of the protein. To investigate their role in the TRPA1 activation, we replaced several cysteine residues by alanine via site-directed mutagenesis. We searched for TRPA1 mutant variants with decreased or lost activating effect of the polysulfides, but with other functions remaining intact (such as the effects of non-electrophilic agonists and antagonists). The binding properties of the mutant receptors were analyzed by in silico molecular docking. Functional changes were tested by in vitro methods: calcium sensitive fluorescent flow cytometry, whole-cell patch-clamp and radioactive calcium-45 liquid scintillation counting. Results: The cysteines forming the conventional binding site of electrophilic agonists, namely C621, C641 and C665 also bind the organic polysulfides, with the key role of C621. However, only their combined mutation abolished completely the organic polysulfide-induced activation of the receptor. Discussion: Since previous papers provided evidence that organic polysulfides exert analgesic and anti-inflammatory actions in different in vivo animal models, we anticipate that the development of TRPA1-targeted, organic polysulfide-based drugs will be promoted by this identification of the binding site.

4.
Orv Hetil ; 163(42): 1663-1669, 2022 Oct 16.
Artigo em Húngaro | MEDLINE | ID: mdl-36244010

RESUMO

In Hungary, there are around 3500 people living with a transplanted organ, there are around 400 total donations, including between 250 and 300 kidney transplants per year. Due to the development of immunosuppression and surgical techniques, the survival rate of patients has improved, and therefore dentists are increasingly confronted with gingival hyperplasia due to immunosuppressive therapy in addition to oro-dental lesions resulting from renal failure. The prevalence of gingival hyperplasia with cyclosporin A can be as high as 90%. The aim of our study is to raise awareness of the importance of dental plaque in the development of cyclosporin A induced gingival hyperplasia and to emphasize that gingival hyperplasia and the risk of organ rejection can be prevented or greatly reduced by the development of appropriate individual oral hygiene and successful periodontal outpatient therapy. Particular mention should be paid to the importance of interdisciplinary cooperation and regular patient care. Our examinations and treatments were carried out at the Division of Periodontology at the Department of Dentistry and Oral Surgery of the University of Pecs, Hungary.


Assuntos
Hiperplasia Gengival , Transplante de Rim , Ciclosporina/efeitos adversos , Hiperplasia Gengival/patologia , Humanos , Hiperplasia , Prevalência
5.
Trials ; 21(1): 809, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993779

RESUMO

BACKGROUND: Early reports indicate that COVID-19 may require intensive care unit (ICU) admission in 5-26% and overall mortality can rise to 11% of the recognised cases, particularly affecting the elderly. There is a lack of evidence-based targeted pharmacological therapy for its prevention and treatment. We aim to compare the effects of a World Health Organization recommendation-based education and a personalised complex preventive lifestyle intervention package (based on the same WHO recommendation) on the outcomes of the COVID-19. METHODS: PROACTIVE-19 is a pragmatic, randomised controlled clinical trial with adaptive "sample size re-estimation" design. Hungarian population over the age of 60 years without confirmed COVID-19 will be approached to participate in a telephone health assessment and lifestyle counselling voluntarily. Volunteers will be randomised into two groups: (A) general health education and (B) personalised health education. Participants will go through questioning and recommendation in 5 fields: (1) mental health, (2) smoking habits, (3) physical activity, (4) dietary habits, and (5) alcohol consumption. Both groups A and B will receive the same line of questioning to assess habits concerning these topics. Assessment will be done weekly during the first month, every second week in the second month, then monthly. The composite primary endpoint will include the rate of ICU admission, hospital admission (longer than 48 h), and mortality in COVID-19-positive cases. The estimated sample size is 3788 subjects per study arm. The planned duration of the follow-up is a minimum of 1 year. DISCUSSION: These interventions may boost the body's cardiovascular and pulmonary reserve capacities, leading to improved resistance against the damage caused by COVID-19. Consequently, lifestyle changes can reduce the incidence of life-threatening conditions and attenuate the detrimental effects of the pandemic seriously affecting the older population. TRIAL REGISTRATION: The study has been approved by the Scientific and Research Ethics Committee of the Hungarian Medical Research Council (IV/2428- 2 /2020/EKU) and has been registered at clinicaltrials.gov ( NCT04321928 ) on 25 March 2020.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/prevenção & controle , Educação em Saúde , Conhecimentos, Atitudes e Prática em Saúde , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Comportamento de Redução do Risco , Ensaios Clínicos Adaptados como Assunto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas/efeitos adversos , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Exercício Físico , Comportamento Alimentar , Feminino , Nível de Saúde , Interações Hospedeiro-Patógeno , Humanos , Hungria , Masculino , Saúde Mental , Pessoa de Meia-Idade , Pneumonia Viral/diagnóstico , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Ensaios Clínicos Pragmáticos como Assunto , Fatores de Proteção , Medição de Risco , Fatores de Risco , SARS-CoV-2 , Fumar/efeitos adversos
6.
Int J Mol Sci ; 21(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526913

RESUMO

The Transient Receptor Potential Ankyrin 1 (TRPA1) cation channel expressed on capsaicin-sensitive afferents, immune and endothelial cells is activated by inflammatory mediators and exogenous irritants, e.g., endotoxins, nicotine, crotonaldehyde and acrolein. We investigated its involvement in acute and chronic pulmonary inflammation using Trpa1 gene-deleted (Trpa1-/-) mice. Acute pneumonitis was evoked by intranasal Escherichia coli endotoxin (lipopolysaccharide: LPS) administration, chronic bronchitis by daily cigarette smoke exposure (CSE) for 4 months. Frequency, peak inspiratory/expiratory flows, minute ventilation determined by unrestrained whole-body plethysmography were significantly greater, while tidal volume, inspiratory/expiratory/relaxation times were smaller in Trpa1-/- mice. LPS-induced bronchial hyperreactivity, myeloperoxidase activity, frequency-decrease were significantly greater in Trpa1-/- mice. CSE significantly decreased tidal volume, minute ventilation, peak inspiratory/expiratory flows in wildtypes, but not in Trpa1-/- mice. CSE remarkably increased the mean linear intercept (histopathology), as an emphysema indicator after 2 months in wildtypes, but only after 4 months in Trpa1-/- mice. Semiquantitative histopathological scores were not different between strains in either models. TRPA1 has a complex role in basal airway function regulation and inflammatory mechanisms. It protects against LPS-induced acute pneumonitis and hyperresponsiveness, but is required for CSE-evoked emphysema and respiratory deterioration. Further research is needed to determine TRPA1 as a potential pharmacological target in the lung.


Assuntos
Bronquite Crônica/fisiopatologia , Fumar Cigarros/efeitos adversos , Pneumonia/fisiopatologia , Canal de Cátion TRPA1/metabolismo , Animais , Bronquite Crônica/induzido quimicamente , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Peroxidase/metabolismo , Pletismografia Total , Pneumonia/induzido quimicamente , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Testes de Função Respiratória , Canal de Cátion TRPA1/genética
7.
Antioxid Redox Signal ; 33(18): 1277-1294, 2020 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-32316739

RESUMO

Aims: The aim of the present study was to investigate the biochemical properties of nitrosopersulfide (SSNO-), a key intermediate of the nitric oxide (NO)/sulfide cross talk. Results: We obtained corroborating evidence that SSNO- is indeed a major product of the reaction of S-nitrosothiols with hydrogen sulfide (H2S). It was found to be relatively stable (t1/2 ∼1 h at room temperature) in aqueous solution of physiological pH, stabilized by the presence of excess sulfide and resistant toward reduction by other thiols. Furthermore, we here show that SSNO- escapes the reducing power of the NADPH-driven biological reducing machineries, the thioredoxin and glutathione reductase systems. The slow decomposition of SSNO- produces inorganic polysulfide species, which effectively induce per/polysulfidation on glutathione or protein cysteine (Cys) residues. Our data also demonstrate that, in contrast to the transient activation by inorganic polysulfides, SSNO- induces long-term potentiation of TRPA1 (transient receptor potential ankyrin 1) channels, which may be due to its propensity to generate a slow flux of polysulfide in situ. Innovation: The characterized properties of SSNO- would seem to represent unique features in cell signaling by enabling sulfur and nitrogen trafficking within the reducing environment of the cytosol, with targeted release of both NO and polysulfide equivalents. Conclusion: SSNO- is a surprisingly stable bioactive product of the chemical interaction of S-nitrosothiol species and H2S that is resistant to reduction by the thioredoxin and glutathione systems. As well as generating NO, it releases inorganic polysulfides, enabling transfer of sulfane sulfur species to peptide/protein Cys residues. The sustained activation of TRPA1 channels by SSNO- is most likely linked to all these properties.


Assuntos
Cisteína/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Sulfetos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Transdução de Sinais
8.
Br J Pharmacol ; 176(4): 628-645, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30292176

RESUMO

Hydrogen sulfide (H2 S) is a gaseous mediator in various physiological and pathological processes, including neuroimmune modulation, metabolic pathways, cardiovascular system, tumour growth, inflammation and pain. Now the hydrogen polysulfides (H2 Sn ) have been recognised as signalling molecules modulating ion channels, transcription factors and protein kinases. Transient receptor potential (TRP) cation channels can be activated by mechanical, thermal or chemical triggers. Here, we review the current literature regarding the biological actions of sulfide and polysulfide compounds mediated by TRP channels with special emphasis on the role of TRPA1, best known as ion channels in nociceptors. However, the non-neuronal TRPA1 channels should also be considered to play regulatory roles. Although sulfide and polysulfide effects in different pathological circumstances and TRPA1-mediated processes have been investigated intensively, our review attempts to present the first comprehensive overview of the potential crosstalk between TRPA1 channels and sulfide-activated signalling pathways. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.


Assuntos
Sulfetos/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Humanos , Neurônios/metabolismo , Transdução de Sinais , Sulfetos/farmacologia , Sulfetos/toxicidade
9.
Neuropeptides ; 62: 1-10, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28291541

RESUMO

Stimulation of capsaicin-sensitive peripheral sensory nerve terminals induces remote anti-inflammatory effects throughout the body of anesthetized rats and guinea-pigs mediated by somatostatin. As somatostatin has also antinociceptive effects, the study aimed at investigating whether similar remote antinociceptive effects can be demonstrated in awake animals. In conscious rats, nociceptive nerve endings of the right hind paw decentralized by cutting the sciatic and saphenous nerves 18h before were chemically stimulated, and drop of the noxious heat threshold (heat hyperalgesia) induced by prior (18h before) plantar incision was measured on the contralateral, left hind paw using an increasing-temperature water bath. 18h after nerve transection, mustard oil-evoked plasma extravasation was not significantly reduced in the right hind paw as tested by in vivo fluorescence imaging. Applying agonist of either transient receptor potential vanilloid 1 (TRPV1) or transient receptor potential ankyrin 1 (TRPA1) receptor (capsaicin or mustard oil, respectively) to the nerve-transected paw inhibited the plantar incision-induced drop of the noxious heat threshold on the contralateral paw. The onset of these remote antihyperalgesic effects was 10-20min. A similar contralateral inhibitory effect of capsaicin or mustard oil treatment was observed on neuropathic mechanical hyperalgesia evoked by partial sciatic nerve injury 2days before nerve transection and measured by a Randall-Selitto apparatus. The remote thermal antihyperalgesic effect was prevented by chronic (5days) denervation or local capsaicin desensitization of the stimulated paw; reduced by intraperitoneally applied antagonist of somatostatin (cyclosomatostatin) or opioid receptors (naloxone). The response was mimicked by intraperitoneally applied somatostatin and associated with a 72±27% increase in plasma somatostatin-like immunoreactivity that was absent after chronic (5days) denervation. In conclusion, chemical activation of decentralized peripheral capsaicin-sensitive nociceptors evokes remote antihyperalgesic responses initiated outside the central nervous system and mediated by somatostatin and endogenous opioids.


Assuntos
Antipruriginosos/farmacologia , Capsaicina/farmacologia , Nociceptores/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Animais , Estado de Consciência , Feminino , Hiperalgesia/induzido quimicamente , Fibras Nervosas/efeitos dos fármacos , Neurotransmissores/farmacologia , Dor/induzido quimicamente , Peptídeos/farmacologia , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Somatostatina/sangue
10.
Brain Behav Immun ; 59: 219-232, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27621226

RESUMO

The tachykinin NK1 receptor was suggested to be involved in psychiatric disorders, but its antagonists have failed to be effective as antidepressants in clinical trials. Hemokinin-1 (HK-1), the newest tachykinin, is present in several brain regions and activates the NK1 receptor similarly to substance P (SP), but acts also through other mechanisms. Therefore, we investigated the roles of the Tac4 gene-derived HK-1 in comparison with SP and neurokinin A (NKA) encoded by the Tac1 gene, as well as the NK1 receptor in anxiety and depression-like behaviors in mice. Mice lacking SP/NKA, HK-1 or the NK1 receptor (Tac1-/-, Tac4-/-, Tacr1-/-, respectively) compared to C57Bl/6 wildtypes (WT), and treatment with the NK1 antagonist CP99994 were used in the experiments. Anxiety was evaluated in the light-dark box (LDB) and the elevated plus maze (EPM), locomotor activity in the open field (OFT) tests. Hedonic behavior was assessed in the sucrose preference test (SPT), depression-like behavior in the tail suspension (TST) and forced swim (FST) tests. FST-induced neuronal responsiveness was evaluated with Fos immunohistochemistry in several stress-related brain regions. In the LDB, Tac4-/- mice spent significantly less, while Tacr1-/- and CP99994-treated mice spent significantly more time in the lit compartment. In the EPM only Tac4-/- showed reduced time in the open arms, but no difference was observed in any other groups. In the OFT Tac4-/- mice showed significantly reduced, while Tac1-/- and Tacr1-/- animals increased motility than the WTs, but CP99994 had no effect. NK1-/- consumed markedly more, while Tac4-/- less sucrose solution compared to WTs. In the TST and FST, Tac4-/- mice showed significantly increased immobility. However, depression-like behavior was decreased both in cases of genetic deletion and pharmacological blockade of the NK1 receptor. FST-induced neuronal activation in different nuclei involved in behavioral and neuroendocrine stress responses was significantly reduced in the brain of Tac4 -/- mice. Our results provide the first evidence for an anxiolytic and anti-depressant-like actions of HK-1 through a presently unknown target-mediated mechanism. Identification of its receptor and/or signaling pathways might open new perspectives for anxiolytic and anti-depressant therapies.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/genética , Depressão/genética , Precursores de Proteínas/genética , Precursores de Proteínas/fisiologia , Taquicininas/genética , Taquicininas/fisiologia , Anedonia , Animais , Ansiedade/psicologia , Depressão/psicologia , Preferências Alimentares , Genes fos , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Receptores da Neurocinina-1/genética , Substância P/genética
11.
Glia ; 64(12): 2166-2180, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27568827

RESUMO

Multiple sclerosis is a chronic inflammatory, demyelinating degenerative disease of the central nervous system. Current treatments target pathological immune responses to counteract the inflammatory processes. However, these drugs do not restrain the long-term progression of clinical disability. For this reason, new therapeutic approaches and identification of novel target molecules are needed to prevent demyelination or promote repair mechanisms. Transient Receptor Potential Ankyrin 1 (TRPA1) is a nonselective cation channel with relatively high Ca2+ permeability. Its pathophysiological role in central nervous system disorders has not been elucidated yet. In the present study, we aimed to assess the distribution of TRPA1 in the mouse brain and reveal its regulatory role in the cuprizone-induced demyelination. This toxin-induced model, characterized by oligodendrocyte apoptosis and subsequent primary demyelination, allows us to investigate the nonimmune aspects of multiple sclerosis. We found that TRPA1 is expressed on astrocytes in the mouse central nervous system. Interestingly, TRPA1 deficiency significantly attenuated cuprizone-induced demyelination by reducing the apoptosis of mature oligodendrocytes. Our data suggest that TRPA1 regulates mitogen-activated protein kinase pathways, as well as transcription factor c-Jun and a proapoptotic Bcl-2 family member (Bak) expression resulting in enhanced oligodendrocyte apoptosis. In conclusion, we propose that TRPA1 receptors enhancing the intracellular Ca2+ concentration modulate astrocyte functions, and influence the pro or anti-apoptotic pathways in oligodendrocytes. Inhibition of TRPA1 receptors might successfully diminish the degenerative pathology in multiple sclerosis and could be a promising therapeutic target to limit central nervous system damage in demyelinating diseases. GLIA 2016;64:2166-2180.


Assuntos
Apoptose/efeitos dos fármacos , Encéfalo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Inibidores da Monoaminoxidase/toxicidade , Oligodendroglia/efeitos dos fármacos , Canal de Cátion TRPA1/deficiência , Polipose Adenomatosa do Colo/metabolismo , Animais , Apoptose/genética , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Desmielinizantes/genética , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Gliose/induzido quimicamente , Gliose/genética , Camundongos , Camundongos Knockout , Proteína Básica da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
12.
Life Sci ; 154: 66-74, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27126699

RESUMO

AIMS: To investigate the roles of TRPV1 and TRPA1 channels in baseline and allyl isothiocyanate (AITC)-evoked nociceptive responses by comparing wild-type and gene-deficient mice. MAIN METHODS: In contrast to conventional methods of thermonociception measuring reflex latencies, we used our novel methods to determine the noxious heat threshold. KEY FINDINGS: It was revealed that the heat threshold of the tail measured by an increasing-temperature water bath is significantly higher in TRPV1(-/-), but not TRPA1(-/-), mice compared to respective wild-types. There was no difference between the noxious heat thresholds of the hind paw as measured by an increasing-temperature hot plate in TRPV1(-/-), TRPA1(-/-) and the corresponding wild-type mice. The withdrawal latency of the tail from 0°C water was prolonged in TRPA1(-/-), but not TRPV1(-/-), mice compared to respective wild-types. In wild-type animals, dipping the tail or paw into 1% AITC induced an 8-14°C drop of the noxious heat threshold (heat allodynia) of both the tail and paw, and 40-50% drop of the mechanonociceptive threshold (mechanical allodynia) of the paw measured by dynamic plantar esthesiometry. These AITC-evoked responses were diminished in TRPV1(-/-), but not TRPA1(-/-), mice. Tail withdrawal latency to 1% AITC was significantly prolonged in both gene-deleted strains. SIGNIFICANCE: Different heat sensors determine the noxious heat threshold in distinct areas: a pivotal role for TRPV1 on the tail is contrasted with no involvement of either TRPV1 or TRPA1 on the hind paw. Noxious heat threshold measurement appears appropriate for preclinical screening of TRP channel ligands as novel analgesics.


Assuntos
Temperatura Alta , Isotiocianatos/farmacologia , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/genética , Animais , Camundongos , Camundongos Knockout , Canal de Cátion TRPA1
13.
Neuropharmacology ; 101: 204-15, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26387439

RESUMO

Somatostatin regulates stress-related behavior and its expression is altered in mood disorders. However, little is known about the underlying mechanisms, especially about the importance of its receptors (sst1-sst5) in anxiety and depression-like behavior. Here we analyzed the potential role of sst4 receptor in these processes, since sst4 is present in stress-related brain regions, but there are no data about its functional relevance. Genetic deletion of sst4 (Sstr4(-/-)) and its pharmacological activation with the newly developed selective non-peptide agonist J-2156 were used. Anxiety was examined in the elevated plus maze (EPM) and depression-like behavior in the forced swim (FST) and tail suspension tests (TST). Neuronal activation during the TST was monitored by Fos immunohistochemistry, receptor expression was identified by sst4(LacZ) immunostaining in several brain regions. Sstr4(-/-) mice showed increased anxiety in the EPM and enhanced depression-like behavior in the FST. J-2156 (100 µg/kg i.p.) exhibited anxiolytic effect in the EPM and decreased immobility in the TST. J-2156 alone did not influence Fos immunoreactivity in intact mice, but significantly increased the stress-induced Fos response in the dorsal raphe nucleus, central projecting Edinger-Westphal nucleus, periaqueductal gray matter, the magnocellular, but not the parvocellular part of the hypothalamic paraventricular nucleus, lateral septum, bed nucleus of the stria terminalis and the amygdala. Notably, sst4(LacZ) immunoreactivity occurred in the central and basolateral amygdala. Together, these studies reveal that sst4 mediates anxiolytic and antidepressant-like effects by enhancing the stress-responsiveness of several brain regions with special emphasis on the amygdala.


Assuntos
Antidepressivos/uso terapêutico , Ansiedade/metabolismo , Butanos/uso terapêutico , Depressão/metabolismo , Naftalenos/uso terapêutico , Receptores de Somatostatina/metabolismo , Sulfonas/uso terapêutico , Análise de Variância , Animais , Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Ansiedade/genética , Ansiedade/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Butanos/farmacologia , Depressão/tratamento farmacológico , Depressão/genética , Depressão/patologia , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Elevação dos Membros Posteriores , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Naftalenos/farmacologia , Proteínas Oncogênicas v-fos/metabolismo , Receptores de Somatostatina/genética , Sulfonas/farmacologia , Natação/psicologia
14.
J Invest Dermatol ; 135(9): 2209-2218, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25905588

RESUMO

Although pituitary adenylate cyclase-activating polypeptide (PACAP) was described as a key vasoregulator in human skin, little is known about its expression in mouse skin. As it is important to investigate PACAP signaling in translational mouse dermatitis models, we determined its presence, regulation, and role in neurogenic and non-neurogenic cutaneous inflammatory mechanisms. The mRNA of PACAP and its specific receptor PAC1 was detected with real-time PCR in several skin regions at comparable levels. PACAP-38-immunoreactivity measured with radioimmunoassay was similar in plantar and dorsal paw skin and the ear but significantly smaller in the back skin. PACAP and PAC1 mRNA, as well as PACAP-38 and PAC1 protein expression, significantly increased in the plantar skin after intraplantar administration of capsaicin (50 µl, 100 µg ml(-1)), an agonist of the transient receptor potential vanilloid 1 (TRPV1) receptor, evoking chiefly neurogenic inflammation without inflammatory cell accumulation. Intraplantar complete Freund's adjuvant (CFA; 50 µl, 1 mg ml(-1)) also increased PACAP/PAC1 mRNA but not the PACAP peptide. Capsaicin-induced neurogenic paw edema, but not CFA-evoked non-neurogenic swelling, was significantly smaller in PACAP-deficient mice throughout a 24-hour period. To our knowledge, we provide previously unreported evidence for PACAP and PAC1 expression upregulation during skin inflammation of different mechanisms and for its pro-inflammatory function in neurogenic edema formation.


Assuntos
Dermatite/patologia , Inflamação Neurogênica/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Canais de Cátion TRPV/farmacologia , Análise de Variância , Animais , Capsaicina/farmacologia , Dermatite/genética , Dermatite/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inflamação Neurogênica/induzido quimicamente , Inflamação Neurogênica/fisiopatologia , RNA Mensageiro/análise , Radioimunoensaio , Distribuição Aleatória , Estatísticas não Paramétricas , Ativação Transcricional , Regulação para Cima
15.
Peptides ; 64: 1-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25541043

RESUMO

OBJECTIVE: Hemokinin-1, the newest tachykinin encoded by the preprotachykinin C (Tac4) gene, is predominatly produced by immune cells. Similarly to substance P, it has the greatest affinity to the tachykinin NK1 receptor, but has different binding site and signaling mechanisms. Furthermore, several recent data indicate the existence of a not yet identified own receptor and divergent non-NK1-mediated actions. Since there is no information on its functions in the airways, we investigated its role in endotoxin-induced pulmonary inflammation. METHODS: Acute pneumonitis was induced in Tac4 gene-deleted (Tac4(-/-)) mice compared to C57Bl/6 wildtypes by intranasal E. coli lipopolysaccharide (LPS). Airway responsiveness to inhaled carbachol was measured with unrestrained whole body plethysmography 24h later. Semiquantitative histopathological scoring was performed; reactive oxygen species (ROS) production was measured with luminol bioluminescence, myeloperoxidase activity with spectrophotometry, and inflammatory cytokines with Luminex. RESULTS: All inflammatory parameters, such as histopathological alterations (perivascular edema, neutrophil/macrophage accumulation, goblet cell hyperplasia), myeloperoxidase activity, ROS production, as well as interleukin-1beta, interleukin-6, tumor necrosis factor alpha, monocyte chemoattractant protein-1 and keratinocyte chemoattractant concentrations were significantly diminished in the lung of Tac4(-/-) mice. However, bronchial hyperreactivity similarly developed in both groups. Interestingly, in LPS-treated Tac4(-/-) mouse lungs, bronchus-associated, large, follicle-like lymphoid structures developed. CONCLUSIONS: We provide the first evidence that hemokinin-1 plays a crucial pro-inflammatory role in the lung by increasing inflammatory cell activities, and might also be a specific regulator of lymphocyte functions.


Assuntos
Pneumonia/fisiopatologia , Precursores de Proteínas/fisiologia , Taquicininas/fisiologia , Doença Aguda , Animais , Citocinas/metabolismo , Feminino , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Precursores de Proteínas/efeitos dos fármacos , Precursores de Proteínas/imunologia , Taquicininas/efeitos dos fármacos , Taquicininas/imunologia
16.
PLoS One ; 9(9): e108164, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25265225

RESUMO

Transient Receptor Potential Ankyrin 1 (TRPA1) channels are localized on sensory nerves and several non-neural cells, but data on their functional significance are contradictory. We analysed the presence and alterations of TRPA1 in comparison with TRP Vanilloid 1 (TRPV1) at mRNA and protein levels in human and mouse intact and inflamed colons. The role of TRPA1 in a colitis model was investigated using gene-deficient mice. TRPA1 and TRPV1 expressions were investigated in human colon biopsies of healthy subjects and patients with inflammatory bowel diseases (IBD: ulcerative colitis, Crohn's disease) with quantitative PCR and immunohistochemistry. Mouse colitis was induced by oral 2% dextran-sulphate (DSS) for 10 days. For investigating the functions of TRPA1, Disease Activity Index (weight loss, stool consistency, blood content) was determined in C57BL/6-based Trpa1-deficient (knockout: KO) and wildtype (WT) mice. Sensory neuropeptides, their receptors, and inflammatory cytokines/chemokines were determined with qPCR or Luminex. In human and mouse colons TRPA1 and TRPV1 are located on epithelial cells, macrophages, enteric ganglia. Significant upregulation of TRPA1 mRNA was detected in inflamed samples. In Trpa1 KO mice, Disease Activity Index was significantly higher compared to WTs. It could be explained by the greater levels of substance P, neurokinins A and B, neurokinin 1 receptor, pituitary adenylate-cyclase activating polypeptide, vasoactive intestinal polypeptide, and also interleukin-1beta, macrophage chemoattractant protein-1, monokine induced by gamma interferon-1, tumor necrosis factor-alpha and B-lymphocyte chemoattractant in the distal colon. TRPA1 is upregulated in colitis and its activation exerts protective roles by decreasing the expressions of several proinflammatory neuropeptides, cytokines and chemokines.


Assuntos
Canais de Cálcio/fisiologia , Colite/fisiopatologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Regulação para Cima , Animais , Sequência de Bases , Canais de Cálcio/genética , Colite/metabolismo , Colo/metabolismo , Primers do DNA , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/metabolismo , Reação em Cadeia da Polimerase , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/genética
17.
Arthritis Rheumatol ; 66(10): 2739-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25048575

RESUMO

OBJECTIVE: Pituitary adenylate cyclase-activating polypeptide (PACAP) expressed in capsaicin-sensitive sensory neurons and immune cells has divergent functions in inflammatory and pain processes. This study was undertaken to investigate the involvement of PACAP in a mouse model of rheumatoid arthritis. METHODS: Arthritis was induced in PACAP(-/-) and wild-type (PACAP(+/+) ) mice by K/BxN serum transfer. General features of the disease were investigated by semiquantitative scoring, plethysmometry, and histopathologic analysis. Mechano- and thermonociceptive thresholds and motor functions were also evaluated. Metabolic activity was assessed by positron emission tomography. Bone morphology was measured by in vivo micro-computed tomography, myeloperoxidase activity and superoxide production by bioluminescence imaging with luminol and lucigenin, respectively, and vascular permeability by fluorescent indocyanine green dye study. RESULTS: PACAP(+/+) mice developed notable joint swelling, reduced grasping ability, and mechanical (but not thermal) hyperalgesia after K/BxN serum transfer. In PACAP(-/-) mice clinical scores and edema were significantly reduced, and mechanical hyperalgesia and motor impairment were absent, throughout the 2-week period of observation. Metabolic activity and superoxide production increased in the tibiotarsal joints of wild-type mice but were significantly lower in PACAP(-/-) animals. Myeloperoxidase activity in the ankle joints of PACAP(-/-) mice was significantly reduced in the early phase of arthritis, but increased in the late phase. Synovial hyperplasia was also significantly increased, and progressive bone spur formation was observed in PACAP-deficient mice only. CONCLUSION: In PACAP-deficient mice with serum-transfer arthritis, joint swelling, vascular leakage, hyperalgesia, and early inflammatory cell accumulation are reduced; in the later phase of the disease, immune cell function and bone neoformation are increased. Elucidation of the underlying pathways of PACAP activity may open promising new avenues for development of therapy in inflammatory arthritis.


Assuntos
Artrite Experimental/metabolismo , Hiperalgesia/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Artrite Experimental/fisiopatologia , Hiperalgesia/fisiopatologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Camundongos , Camundongos Knockout , Medição da Dor , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Células Receptoras Sensoriais , Índice de Gravidade de Doença
18.
Ocul Surf ; 12(2): 134-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24725325

RESUMO

Previous studies showed comorbidity of some ocular, enteral, and affective symptoms comprising irritable eye syndrome. Aims of the present study were to learn more about the pathogenic mechanisms of this syndrome and to evaluate benefits of food supplements on these disorders. In in vitro assay, Lactobacillus acidophilus lysate inhibited interleukin (IL)-1ß and tumor necrosis factor (TNF)-α generation of lipopolysaccharide (LPS)-stimulated macrophages in dose- and size-dependent manner. For a prospective, open-label phase I/II controlled clinical trial, 40 subjects affected by ocular dysesthesia and hyperesthesia and comorbid enteral and anxiety-depression symptoms were randomly assigned either into the treated group, which received a composition containing probiotic lysate, vitamins A, B, and D and omega 3 fatty acids, or into the control group, which received vitamins and omega 3 fatty acids. For reference, 20 age- and sex-matched healthy subjects were also selected. White blood count (WBC) and lymphocyte and monocyte counts, as well as IL-6 and TNF-α levels, were significantly above the reference levels in both treated and control groups. After 8 weeks, WBC and lymphocyte and monocyte counts, and cytokine levels significantly decreased, and ocular, enteral, and anxiety-depression symptoms significantly improved in the treated group as compared to the control group. This proof-of-concept study suggested that subclinical inflammation may be a common mechanism connecting ocular, enteral, and anxiety/depression symptoms, and supplements affecting dysbiosis may be a new approach to treating this syndrome.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Ceratite/imunologia , Ceratite/terapia , Probióticos/uso terapêutico , Vitaminas/administração & dosagem , Adulto , Animais , Óleo de Fígado de Bacalhau/administração & dosagem , Constipação Intestinal/complicações , Depressão/complicações , Diarreia/complicações , Feminino , Humanos , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Ceratite/complicações , Lactobacillus acidophilus , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos , Pessoa de Meia-Idade , Neuroimunomodulação/imunologia , Parestesia/imunologia , Parestesia/terapia , Estudos Prospectivos , Fator de Necrose Tumoral alfa/imunologia
19.
Peptides ; 54: 49-57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24457113

RESUMO

Alterations of somatostatin-like immunoreactivity (SST-LI) in the plasma of 11 systemic inflammatory response syndrome (SIRS) patients were investigated in correlation with cytokines, adhesion molecules and coagulation markers repeatedly during 4 days. The origin and role of SST were studied in the cecum ligation and puncture (CLP) rat SIRS model. Capsaicin-sensitive peptidergic sensory nerves were defunctionalized by resiniferatoxin (RTX) pretreatment 2 weeks earlier, in a separate group animals were treated with the somatostatin receptor antagonist cyclo-somatostatin (C-SOM). Plasma SST-LI significantly elevated in septic patients compared to healthy volunteers during the whole 4-day period. Significantly decreased Horowitz score showed severe lung injury, increased plasma C-reactive protein and procalcitonin confirmed SIRS. Soluble P-selectin, tissue plasminogen activator and the interleukin 8 and monocyte chemotactic protein-1 significantly increased, interleukin 6 and soluble CD40 ligand did not change, and soluble Vascular Adhesion Molecule-1 decreased. SST-LI significantly increased in rats both in the plasma and the lung 6h after CLP compared to sham-operation. After RTX pretreatment SST-LI was not altered in intact animals, but the SIRS-induced elevation was absent. Lung MPO activity significantly increased 6h following CLP compared to sham operation, which was significantly higher both after RTX-desensitization and C-SOM-treatment. Most non-pretreated operated rats survived the 6h, but 60% of the RTX-pretreated ones died showing a significantly worse survival. This is the first comprehensive study in humans and animal experiments providing evidence that SST is released from the activated peptidergic sensory nerves. It gets into the bloodstream and mediates a potent endogenous protective mechanism.


Assuntos
Peptídeos/sangue , Sepse/sangue , Síndrome de Resposta Inflamatória Sistêmica/sangue , Idoso , Animais , Biomarcadores/sangue , Ligante de CD40/sangue , Capsaicina/farmacologia , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Selectina-P/sangue , Peptídeos/imunologia , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Sepse/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Molécula 1 de Adesão de Célula Vascular/sangue
20.
Br J Clin Pharmacol ; 77(1): 5-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23432438

RESUMO

Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Terapia de Alvo Molecular/métodos , Receptores de Neuropeptídeos/agonistas , Receptores de Neuropeptídeos/antagonistas & inibidores , Animais , Humanos , Mediadores da Inflamação/agonistas , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Receptores de Neuropeptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA