Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125950

RESUMO

In vitro alternative therapy of human epidermoid squamous carcinoma (A431) by superparamagnetic hyperthermia (SPMHT) using Fe3O4 (magnetite) superparamagnetic nanoparticles (SPIONs) with an average diameter of 15.8 nm, bioconjugated with hydroxypropyl gamma-cyclodextrins (HP-γ-CDs) by means of polyacrylic acid (PAA) biopolymer, is presented in this paper. The therapy was carried out at a temperature of 43 °C for 30 min using the concentrations of Fe3O4 ferrimagnetic nanoparticles from nanobioconjugates of 1, 5, and 10 mg/mL nanoparticles in cell suspension, which were previously found by us to be non-toxic for healthy cells (cell viabilities close to 100%), according to ISO standards (cell viability must be greater than 70%). The temperature for the in vitro therapy was obtained by the safe application (without exceeding the biological limit and cellular damage) of an alternating magnetic field with a frequency of 312.4 kHz and amplitudes of 168, 208, and 370 G, depending on the concentration of the magnetic nanoparticles. The optimal concentration of magnetic nanoparticles in suspension was found experimentally. The results obtained after the treatment show its high effectiveness in destroying the A431 tumor cells, up to 83%, with the possibility of increasing even more, which demonstrates the viability of the SPMHT method with Fe3O4-PAA-(HP-γ-CDs) nanobioconjugates for human squamous cancer therapy.


Assuntos
Carcinoma de Células Escamosas , Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias Cutâneas , gama-Ciclodextrinas , Humanos , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , gama-Ciclodextrinas/química , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Sobrevivência Celular/efeitos dos fármacos , Nanoconjugados/química
2.
Drug Deliv ; 31(1): 2388624, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39152905

RESUMO

Methotrexate (MTX) is a folic acid antagonist routinely used in cancer treatment, characterized by poor water solubility and low skin permeability. These issues could be mitigated by using drug delivery systems, such as functionalized gold nanoparticles (AuNPs), known for their versatility and unique properties. This study aimed to develop multi-shell AuNPs functionalized with MTX for the improvement of MTX antitumoral, antioxidant, and biocompatibility features. Stable phosphine-coated AuNPs were synthesized and functionalized with tailored polyethylene glycol (PEG) and short-branched polyethyleneimine (PEI) moieties, followed by MTX covalent binding. Physicochemical characterization by UV-vis and Fourier-transform infrared spectroscopy (FTIR) spectroscopy, dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), and X-ray photoelectron spectroscopy (XPS) confirmed the synthesis at each step. The antioxidant activity of functionalized AuNPs was determined using DPPH radical scavenging assay, ferric ions' reducing antioxidant power (FRAP), and cupric reducing antioxidant capacity (CUPRAC) assays. Biocompatibility and cytotoxicity were assessed using MTT and LDH assays on HaCaT human keratinocytes and CAL27 squamous cell carcinoma. MTX functionalized AuNPs demonstrated enhanced antioxidant activity and a pronounced cytotoxic effect on the tumoral cells compared to their individual components, highlighting their potential for improving cancer therapy.


Assuntos
Antioxidantes , Ouro , Nanopartículas Metálicas , Metotrexato , Metotrexato/farmacologia , Metotrexato/administração & dosagem , Metotrexato/química , Ouro/química , Humanos , Nanopartículas Metálicas/química , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Linhagem Celular Tumoral , Polietilenoglicóis/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Polietilenoimina/química , Células HaCaT , Queratinócitos/efeitos dos fármacos
3.
J Med Chem ; 67(4): 3018-3038, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38301036

RESUMO

New dihydro-pyrrol-2-one compounds, featuring dual sulfonamide groups, were synthesized through a one-pot, three-component approach utilizing trifluoroacetic acid as a catalyst. Computational analysis using density functional theory (DFT) and condensed Fukui function explored the structure-reactivity relationship. Evaluation against human carbonic anhydrase isoforms (hCA I, II, IX, XII) revealed potent inhibition. The widely expressed cytosolic hCA I was inhibited across a range of concentrations (KI 3.9-870.9 nM). hCA II, also cytosolic, exhibited good inhibition as well. Notably, all compounds effectively inhibited tumor-associated hCA IX (KI 1.9-211.2 nM) and hCA XII (low nanomolar). Biological assessments on MCF7 cancer cells highlighted the compounds' ability, in conjunction with doxorubicin, to significantly impact tumor cell viability. These findings underscore the potential therapeutic relevance of the synthesized compounds in cancer treatment.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Anidrase Carbônica IX , Relação Estrutura-Atividade , Anidrases Carbônicas/metabolismo , Isoformas de Proteínas , Estrutura Molecular , Antígenos de Neoplasias
4.
Molecules ; 29(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38398524

RESUMO

6-Iodo-substituted carboxy-quinolines were obtained using a one-pot, three-component method with trifluoroacetic acid as a catalyst under acidic conditions. Iodo-aniline, pyruvic acid and 22 phenyl-substituted aldehydes (we varied the type and number of radicals) or O-heterocycles, resulting in different electronic effects, were the starting components. This approach offers advantages such as rapid response times, cost-effective catalysts, high product yields and efficient purification procedures. A comprehensive investigation was conducted to examine the impact of aldehyde structure on the synthesis pathway. A library of compounds was obtained and characterized by FT-IR, MS, 1H NMR and 13C NMR spectroscopy and single-ray crystal diffractometry. Their antimicrobial activity against S. epidermidis, K. pneumonie and C. parapsilosis was tested in vitro. The effect of iodo-quinoline derivatives on microbial adhesion, the initial stage of microbial biofilm development, was also investigated. This study suggests that carboxy-quinoline derivatives bearing an iodine atom are interesting scaffolds for the development of novel antimicrobial agents.


Assuntos
Anti-Infecciosos , Iodo , Quinolinas , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/química , Quinolinas/química
5.
Heliyon ; 10(4): e26047, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384565

RESUMO

Chronic wounds represent one of the complications that might occur from the disruption of wound healing process. Recently, there has been a rise in interest in employing nanotechnology to develop novel strategies for accelerating wound healing. The aim of the present study was to use a green synthesis method to obtain AgNPs/NaLS systems useful for wounds management and perform an in-depth investigation of their behavior during and post-synthesis as well as of their biological properties. The colloids obtained from silver nanoparticles (AgNPs) and commercial sodium lignosulfonate (NaLS) in a single-pot aqueous procedure have been fully characterized by UV-Vis, FT-IR, DLS, TEM, XRD, and XPS to evaluate the synthesis efficiency and to provide new insights in the process of AgNPs formation and NaLS behavior in aqueous solutions. The effects of various concentrations of NaLS (0-16 mg/mL) and AgNO3 (0-20 mM) and of two different temperatures on AgNPs formation have been analyzed. Although the room temperature is feasible for AgNPs synthesis, the short mixing at 70 °C significantly increases the speed of nanoparticle formation and storage stability. In all experimental conditions AgNPs of 20-40 nm in size have been obtained. The antimicrobial activity assessed quantitatively on clinical and reference bacterial strains, both in suspension and biofilm growth state, revealed a broad antimicrobial spectrum, the most intensive inhibitory effect being noticed against Pseudomonas aeruginosa and Escherichia coli strains. The AgNP/NaLS enhanced the NO extracellular release, potentially contributing to the microbicidal and anti-adherence activity by protein oxidation. Both AgNP/NaLS and NaLS were non-hemolytic (hemolytic index<5%, 2.26 ± 0.13% hemolysis) and biocompatible (102.17 ± 3.43 % HaCaT cells viability). The presence of AgNPs increased the antioxidative activity and induced a significant cytotoxicity on non-melanoma skin cancer cells (62.86 ± 8.27% Cal-27 cells viability). Taken together, all these features suggest the multivalent potential of these colloids for the development of novel strategies for wound management, acting by preventing infection-associated complications and supporting the tissue regeneration.

6.
Curr Treat Options Oncol ; 25(1): 97-126, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224423

RESUMO

OPINION STATEMENT: Malignant fungating wounds (MFW) are severe skin conditions generating tremendous distress in oncological patients with advanced cancer stages because of pain, malodor, exudation, pruritus, inflammation, edema, and bleeding. The classical therapeutic approaches such as surgery, opioids, antimicrobials, and application of different wound dressings are failing in handling pain, odor, and infection control, thus urgently requiring the development of alternative strategies. The aim of this review was to provide an update on the current therapeutic strategies and the perspectives on developing novel alternatives for better malignant wound management. The last decade screened literature evidenced an increasing interest in developing natural treatment alternatives based on beehive, plant extracts, pure vegetal compounds, and bacteriocins. Promising therapeutics can also be envisaged by involving nanotechnology due to either intrinsic biological activities or drug delivery properties of nanomaterials. Despite recent progress in the field of malignant wound care, the literature is still mainly based on in vitro and in vivo studies on small animal models, while the case reports and clinical trials (less than 10 and only one providing public results) remain scarce. Some innovative treatment approaches are used in clinical practice without prior extensive testing in fungating wound patients. Extensive research is urgently needed to fill this knowledge gap and translate the identified promising therapeutic approaches to more advanced testing stages toward creating multidimensional wound care strategies.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Dor , Odorantes , Controle de Infecções , Projetos de Pesquisa
7.
Int J Biol Macromol ; 256(Pt 2): 128314, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007008

RESUMO

Nowadays, there is a growing interest in multifunctional therapeutic agents as valuable tools to improve and expand the applicability field of traditional bioactive compounds. In this context, the synthesis and main characteristics of dextran-coated iron oxide nanoparticles (IONP-Dex) loaded with both an antioxidant, protocatechuic acid (PCA), and an antibiotic, ceftazidime (CAZ) or levofloxacin (LEV) are herein reported for the first time, with emphasis on the potentiation effect of PCA on drugs activity. All nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry, differential scanning calorimetry and dynamic light scattering. As evidenced by DPPH method, IONP-Dex loaded with PCA and LEV had similar antioxidant activity like those with PCA only, but higher than PCA and CAZ loaded ones. A synergy of action between PCA and each antibiotic co-loaded on IONP-Dex has been highlighted by an enhanced activity against reference bacterial strains, such as S. aureus and E. coli after 40 min of incubation. It was concluded that PCA, which is the main cause of the antioxidative properties of loaded nanoparticles, further improves the antimicrobial activity of IONP-Dex nanoparticles when was co-loaded with CAZ or LEV antibiotics. All constructs also showed a good biocompatibility with normal human dermal fibroblasts.


Assuntos
Dextranos , Hidroxibenzoatos , Nanopartículas , Humanos , Dextranos/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Nanopartículas/química , Nanopartículas Magnéticas de Óxido de Ferro
8.
Polymers (Basel) ; 15(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959905

RESUMO

Nanomedicine has garnered significant attention due to the advantages it offers in the treatment of cancer-related disorders, some of the deadliest diseases affecting human lives. Conventional medication formulations often encounter issues of instability or insolubility in biological environments, resulting in low bioavailability. Nanocarriers play a crucial role in transporting and safeguarding drugs at specific sites of action, enabling gradual release under particular conditions. This study focuses on methotrexate (MTx) and cytarabine (Cyt), essential antitumoral drugs, loaded into PEGylated squalene micellar structures to enhance therapeutic effectiveness and minimize drawbacks. The micelles were prepared using ultrasound-assisted methods in both water and phosphate buffer saline solutions. Evaluation of drug-loaded micelles encompassed parameters such as particle size, colloidal stability, surface charge, morphology, encapsulation efficiency, drug loading capacity, and in vitro release profiles under simulated physiological and tumoral conditions. In vitro cell inhibition studies conducted on MCF-7 and HeLa cell lines demonstrated higher antitumoral activity for the drug-encapsulated micelles compared to free drugs. The encapsulation effectively addressed the burst effect, providing sustained release for at least 48 h while enhancing the drug's protection under physiological conditions.

9.
Future Med Chem ; 15(15): 1369-1391, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37577781

RESUMO

Aim: A series of new hybrid molecules with two iodine atoms on the sides were synthesized. Methods: A one-pot, two-component method with trifluoroacetic acid as an effective catalyst to obtain dihydro-pyrrol-2-one compounds was developed. Short reaction times, a cheap catalyst, high yields and clean work-up are benefits of this method. Results: The chemical structures of the newly synthesized compounds were verified through spectroscopic techniques. Their antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans was tested in vitro. Conclusion: NC- and OH- radicals confer broad-spectrum antimicrobial activity, including against Gram-positive and Gram-negative bacteria and yeasts. Compounds 3g >7 and >9 were most active on the two bacterial species, while 3l >9 and >3i were most active against the fungal strain.

10.
Biomater Adv ; 144: 213201, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436432

RESUMO

Cargocomplexes play a vital role in non-viral delivery methods due to their capacity to target certain cells (or cells through the cell-division cycle) and inject their (macro)molecular "cargo" into them. The development of gene carriers that can efficiently transport and deliver genetic material into human-targeted cells with minimal toxicity is an important challenge in the field. The present study reports the straightforward preparation and testing of a modular non-viral gene carrier based on AuNPs. The design, synthesis, and in vitro evaluation of multilayer gold nanoparticles (AuNPs) as non-viral gene carriers with high transfection efficiency, reduced cytotoxicity for targeted therapeutic delivery of nucleic acids to MCF-7 cancer cells are presented. The developed non-viral vector is based on supramolecular "host-guest" inclusion complexes of ß-cyclodextrin, positioned on the AuNPs surface over a layer of polyethyleneimine, and adamantyl moiety from polyethylene glycol conjugated decapeptide (WXEAAYQRFL). First, the ß-CD functionalized PEI was utilized as the template for the synthesis of AuNPs of controlled sizes. The reaction produced small AuNPs with a cationic layer which is known for efficient condensation of genetic material and ß-CD suitable for the decoration of the carrier with targeting moieties using "host-guest" inclusion complexation. Subsequently, adamantine-polyethylene glycol conjugated decapeptide was attached to the AuNPs. The in vitro results have validated the ability of the proposed systems to selectively target tumor cells with high efficacy and low toxicity due to the unique affinity of the aptamer-functionalized nanoparticles toward breast cancer cells. The findings of this work demonstrated that the proposed modular system may represent a very promising platform for the AuNP-based non-viral vectors mainly due to the versatility of the system, which allows for the facile exchange of several types of ligands for improving the targeting properties and transfection efficiency, or for providing better protection from the endocytotic systems.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Células MCF-7 , Ouro/química , Nanopartículas Metálicas/química , Transfecção , Polietilenoglicóis/química
11.
Eur J Med Chem ; 244: 114811, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208508

RESUMO

Solid tumors are mainly characterized by a specific hypoxic microenvironment which makes them particularly challenging to treat. The Carbonic Anhydrase IX (CA IX) is one of the major enzymes implicated in the regulation and maintaining of such conditions and therefore its targeting represents a winning approach in recent tumor targeted therapy. In our search for an innovative combination therapy, we attained the synthesis of selective CA IX inhibitors which are also used for cell specific delivery of cytotoxic organotellurium scaffolds. We investigated compounds 5b, 7b and 7c for their redox properties by means of radical species scavenging and lipid peroxidation inhibitory capacity, as well as intracellular (reactive oxygen species) ROS production in both normal and cancer cell lines. Subsequently, compounds were evaluated as possible free radical generators by ESR spectrometry showing to cause or promote the formation of free radicals. These results accounted for a novel, potent, and selective CA IX inhibitor (i.e. 7c, Ki = 32 nM) with high cytotoxic effect against malignant melanoma (MeWo) and hepatocellular carcinoma (HepG2) cells over normal fibroblasts (NHDF) through ROS-independent mechanisms. The preliminary data gives support to employ organotellurium moieties as useful pharmacological tools for further development in the oncological field.


Assuntos
Antineoplásicos , Anidrases Carbônicas , Neoplasias , Humanos , Inibidores da Anidrase Carbônica/química , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Anidrases Carbônicas/metabolismo , Espécies Reativas de Oxigênio , Relação Estrutura-Atividade , Anidrase Carbônica IX/metabolismo , Antígenos de Neoplasias/metabolismo , Neoplasias/patologia , Antineoplásicos/química , Microambiente Tumoral
12.
Nanomaterials (Basel) ; 12(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35683654

RESUMO

Diblock copolymers of polyhistidine are known for their self-assembly into micelles and their pH-dependent disassembly due to the amphiphilic character of the copolymer and the unsaturated imidazole groups that undergo a hydrophobic-to-hydrophilic transition in an acidic pH. This property has been largely utilized for the design of drug delivery systems that target a tumor environment possessing a slightly lower extracellular pH (6.8-7.2). The main purpose of this study was to investigate the possibility of designed poly(ethylene glycol)-polyhistidine sequences synthesized using solid-phase peptide synthesis (SPPS), to self-assemble into micelles, to assess the ability of the corresponding micelles to be loaded with doxorubicin (DOX), and to investigate the drug release profile at pH values similar to a malignant extracellular environment. The designed and assembled free and DOX-loaded micelles were characterized from a physico-chemical point of view, their cytotoxicity was evaluated on a human breast cancer cell line (MDA-MB-231), while the cellular areas where micelles disassembled and released DOX were assessed using immunofluorescence. We concluded that the utilization of SPPS for the synthesis of the polyhistidine diblock copolymers yielded sequences that behaved similarly to the copolymeric sequences synthesized using ring-opening polymerization, while the advantages of SPPS may offer facile tuning of the histidine site or the attachment of a large variety of functional molecules.

13.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409184

RESUMO

Calcific aortic valve disease (CAVD) is a progressive inflammatory disorder characterized by extracellular matrix remodeling and valvular interstitial cells (VIC) osteodifferentiation leading to valve leaflets calcification and impairment movement. Runx2, the master transcription factor involved in VIC osteodifferentiation, modulates the expression of other osteogenic molecules. Previously, we have demonstrated that the osteoblastic phenotypic shift of cultured VIC is impeded by Runx2 silencing using fullerene (C60)-polyethyleneimine (PEI)/short hairpin (sh)RNA-Runx2 (shRunx2) polyplexes. Since the use of polyplexes for in vivo delivery is limited by their instability in the plasma and the non-specific tissue interactions, we designed and obtained targeted, lipid-enveloped polyplexes (lipopolyplexes) suitable for (1) systemic administration and (2) targeted delivery of shRunx2 to osteoblast-differentiated VIC (oVIC). Vascular cell adhesion molecule (VCAM)-1 expressed on the surface of oVIC was used as a target, and a peptide with high affinity for VCAM-1 was coupled to the surface of lipopolyplexes encapsulating C60-PEI/shRunx2 (V-LPP/shRunx2). We report here that V-LPP/shRunx2 lipopolyplexes are cyto- and hemo-compatible and specifically taken up by oVIC. These lipopolyplexes are functional as they downregulate the Runx2 gene and protein expression, and their uptake leads to a significant decrease in the expression of osteogenic molecules (OSP, BSP, BMP-2). These results identify V-LPP/shRunx2 as a new, appropriately directed vehicle that could be instrumental in developing novel strategies for blocking the progression of CAVD using a targeted nanomedicine approach.


Assuntos
Estenose da Valva Aórtica , Calcinose , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Calcinose/metabolismo , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Osteoblastos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
Molecules ; 26(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834114

RESUMO

A series of benzenesulfonamides incorporating pyrazole- and pyridazinecarboxamides decorated with several bulky moieties has been obtained by original procedures. The new derivatives were investigated for the inhibition of four physiologically crucial human carbonic anhydrase (hCA, EC 4.2.2.1.1) isoforms, hCA I and II (cytosolic enzymes) as well as hCA IX and XII (transmembrane, tumor-associated isoforms). Examples of isoform-selective inhibitors were obtained for all four enzymes investigated here, and a computational approach was employed for explaining the observed selectivity, which may be useful in drug design approaches for obtaining inhibitors with pharmacological applications useful as antiglaucoma, diuretic, antitumor or anti-cerebral ischemia drugs.


Assuntos
Anidrases Carbônicas , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/enzimologia , Sulfonamidas , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Pirazóis/química , Pirazóis/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Benzenossulfonamidas
15.
Pharmaceutics ; 13(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34575489

RESUMO

Vascular inflammation plays a crucial role in the progression of various pathologies, including atherosclerosis (AS), and thus it has become an attractive therapeutic target. The protocatechuic acid (PCA), one of the main metabolites of complex polyphenols, is endowed with anti-inflammatory activity, but its formulation into nanocarriers may increase its bioavailability. In this study, we developed and characterized dextran shell‒iron oxide core nanoparticles loaded with PCA (MNP-Dex/PCA) and assessed their cytotoxicity and anti-inflammatory potential on cells acting as key players in the onset and progression of AS, namely, endothelial cells (EC) and monocytes/macrophages. The results showed that MNP-Dex/PCA exert an anti-inflammatory activity at non-cytotoxic and therapeutically relevant concentrations of PCA (350 µM) as supported by the reduced levels of inflammatory molecules such as MCP-1, IL-1ß, TNF-α, IL-6, and CCR2 in activated EC and M1-type macrophages and functional monocyte adhesion assay. The anti-inflammatory effect of MNP-Dex/PCA was associated with the reduction in the levels of ERK1/2 and p38-α mitogen-activated protein kinases (MAPKs) and NF-kB transcription factor. Our data support the further development of dextran shell-magnetic core nanoparticles as theranostic nanoparticles for guidance, imaging, and therapy of vascular inflammation using PCA or other anti-inflammatory compounds.

16.
Biomater Sci ; 9(19): 6623-6640, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34582532

RESUMO

Biocompatible hydrophilic polyethylene glycol (PEG) is widely used in biomedical applications, such as drug or gene delivery, tissue engineering or as an antifouling component in biomedical devices. Experimental studies have shown that the size of PEG can weaken polycation-polyanion interactions, like those between branched polyethyleneimine (b-PEI) and DNA in gene carriers, but details of its cause and underlying interactions on the atomic scale are still not clear. To better understand the interaction mechanisms in the formation of polyplexes between b-PEI-PEG based carriers and DNA, we have used a combination of in silico tools and experiments on three multicomponent systems differing in PEG MW. Using the PEI-PEG-squalene-dsDNA systems of the same size, both in the all-atom MD simulations and in experimental in-gel electrophoresis measurements, we found that the binding between DNA and the vectors is highly influenced by the size of PEG, with the binding efficiency increasing with a shorter PEG length. The mechanism of how PEG interferes with the binding between PEI and DNA is explained using a two-step MD simulation protocol that showed that the DNA-vector interactions are influenced by the PEG length due to the hydrogen bond formation between PEI and PEG. Although computationally demanding we find it important to study molecular systems of the same size both in silico and in a laboratory and to simulate the behaviour of the carrier prior to the addition of bioactive molecules to understand the molecular mechanisms involved in the formation of the polyplex.


Assuntos
Polietilenoglicóis , Esqualeno , Simulação por Computador , DNA , Tamanho da Partícula , Polietilenoimina , Transfecção
17.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443480

RESUMO

Within this study, new materials were synthesized and characterized based on polysiloxane modified with different ratios of N-acetyl-l-cysteine (NAC) and crosslinked via UV-assisted thiol-ene addition, in order to obtain efficient membranes able to resist bacterial adherence and biofilm formation. These membranes were subjected to in vitro testing for microbial adherence against S. pneumoniae using standardized tests. WISTAR rats were implanted for 4 weeks with crosslinked siloxane samples without and with NAC. A set of physical characterization methods was employed to assess the chemical structure and morphological aspects of the new synthetized materials before and after contact with the microbiological medium.


Assuntos
Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Implantes Cocleares/microbiologia , Otite/tratamento farmacológico , Polímeros/química , Siloxanas/química , Acetilcisteína/química , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/uso terapêutico , Implantes Cocleares/efeitos adversos , Polímeros/farmacologia , Polímeros/uso terapêutico , Ratos Wistar , Siloxanas/farmacologia , Siloxanas/uso terapêutico , Streptococcus pneumoniae/efeitos dos fármacos , Compostos de Sulfidrila/química , Propriedades de Superfície
18.
Antioxidants (Basel) ; 10(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067035

RESUMO

This study aimed to obtain and characterize extracted hemp oil enriched in cannabidiol (CBD) by decarboxylation of cannabidiolic acid (CBDA) and to give new insights into its antioxidant and anticancer effects. Optimization of CBDA decarboxylation in hemp oil was performed, and CBD and CBDA contents and purities were determined by flash chromatography, 1H- and 13C-NMR. The antioxidant properties of CBD-enriched oil were investigated by Fe2+ chelating activity, Fe3+ reducing antioxidant power assay, O2●- scavenging activity, HO● scavenging ability and lipid peroxidation inhibitory assay, and its cytotoxicity, apoptosis- and oxidative stress-inducing effects on NHDF, MeWo, HeLa, HepG2 and HOS cells were determined. The CBD concentration in hemp oil was increased by CBDA soft decarboxylation optimized at 90 °C, for 1 h and the resulting oil was capable of reducing iron, scavenging free radicals and inhibiting lipid peroxidation in cell-free oxidative conditions. CBD-enriched oil promoted NHDF proliferation at up to 15 µg CBD/mL, while inducing apoptosis and ROS production and modulating antioxidant enzymes' gene expression in cancer cells, being selective for osteosarcoma cells, and induced apoptosis by p53- and ROS-independent mechanisms. CBD-enriched hemp oil demonstrated antioxidant properties in oxidative conditions and promoted normal fibroblasts' proliferation, while inducing apoptosis and ROS production in cancer cells.

19.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064890

RESUMO

Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the essential reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. A series of chromene-based sulfonamides were synthesized and tested as possible CA inhibitors. Their inhibitory activity was assessed against the cytosolic human isoforms hCA I, hCA II and the transmembrane hCA IX and XII. Several of the investigated derivatives showed interesting inhibition activity towards the tumor associate isoforms hCA IX and hCA XII. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds, within the active site of hCA IX.


Assuntos
Benzopiranos/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/química , Sulfonamidas/farmacologia , Inibidores da Anidrase Carbônica/química , Domínio Catalítico , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química
20.
Bioorg Med Chem Lett ; 45: 128147, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052322

RESUMO

We evaluated in vitro a series of telluride containing compounds bearing the benzenesulfonamide group, as effective inhibitors of the physiologically relevant human (h) expressed Carbonic Anhydrase (CA; EC 4.2.1.1) enzymes I, II, IV VII and IX. The potent effects of such compounds against the tumor-associated hCA IX being low nanomolar inhibitors (KI 2.2 to 2.9 nM) and with good selectivity over the ubiquitous hCA II, gave the possibility to evaluate their lethal effect in vitro against a breast cancer cell line (MDA-MB-231). Among the series, both compounds 3a and 3g induced significant toxic effects against tumor cells after 48 h incubation. Under normoxic condition 3a showed high efficacy killing over 94% of tumor cells at 1 µM, and derivative 3g reached the tumor cell viability under the 5% at 10 µM. In hypoxic condition, these two compounds showed less effective although retained excellent cancer cell killer. These unusual features make them interesting lead compounds acting as antitumor agents also in tumor types not dependent from hCA IX overexpression.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Sulfonamidas/farmacologia , Telúrio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Telúrio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA