Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Mol Biol ; 436(6): 168498, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387550

RESUMO

Cardiac muscle contraction occurs due to repetitive interactions between myosin thick and actin thin filaments (TF) regulated by Ca2+ levels, active cross-bridges, and cardiac myosin-binding protein C (cMyBP-C). The cardiac TF (cTF) has two nonequivalent strands, each comprised of actin, tropomyosin (Tm), and troponin (Tn). Tn shifts Tm away from myosin-binding sites on actin at elevated Ca2+ levels to allow formation of force-producing actomyosin cross-bridges. The Tn complex is comprised of three distinct polypeptides - Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. The molecular mechanism of their collective action is unresolved due to lack of comprehensive structural information on Tn region of cTF. C1 domain of cMyBP-C activates cTF in the absence of Ca2+ to the same extent as rigor myosin. Here we used cryo-EM of native cTFs to show that cTF Tn core adopts multiple structural conformations at high and low Ca2+ levels and that the two strands are structurally distinct. At high Ca2+ levels, cTF is not entirely activated by Ca2+ but exists in either partially or fully activated state. Complete dissociation of TnI C-terminus is required for full activation. In presence of cMyBP-C C1 domain, Tn core adopts a fully activated conformation, even in absence of Ca2+. Our data provide a structural description for the requirement of myosin to fully activate cTFs and explain increased affinity of TnC to Ca2+ in presence of active cross-bridges. We suggest that allosteric coupling between Tn subunits and Tm is required to control actomyosin interactions.


Assuntos
Actinas , Troponina , Actinas/metabolismo , Actomiosina , Cálcio/metabolismo , Microscopia Crioeletrônica , Miosinas/química , Tropomiosina/química , Troponina/química , Troponina/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(9): e2311883121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386705

RESUMO

Heart muscle has the unique property that it can never rest; all cardiomyocytes contract with each heartbeat which requires a complex control mechanism to regulate cardiac output to physiological requirements. Changes in calcium concentration regulate the thin filament activation. A separate but linked mechanism regulates the thick filament activation, which frees sufficient myosin heads to bind the thin filament, thereby producing the required force. Thick filaments contain additional nonmyosin proteins, myosin-binding protein C and titin, the latter being the protein that transmits applied tension to the thick filament. How these three proteins interact to control thick filament activation is poorly understood. Here, we show using 3-D image reconstruction of frozen-hydrated human cardiac muscle myofibrils lacking exogenous drugs that the thick filament is structured to provide three levels of myosin activation corresponding to the three crowns of myosin heads in each 429Å repeat. In one crown, the myosin heads are almost completely activated and disordered. In another crown, many myosin heads are inactive, ordered into a structure called the interacting heads motif. At the third crown, the myosin heads are ordered into the interacting heads motif, but the stability of that motif is affected by myosin-binding protein C. We think that this hierarchy of control explains many of the effects of length-dependent activation as well as stretch activation in cardiac muscle control.


Assuntos
Benzilaminas , Miocárdio , Sarcômeros , Uracila/análogos & derivados , Humanos , Miofibrilas , Miócitos Cardíacos , Miosinas
3.
Biochemistry ; 62(14): 2137-2146, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37379571

RESUMO

The disordered and basic C-terminal 14 residues of human troponin T (TnT) are essential for full inhibition of actomyosin ATPase activity at low Ca2+ levels and for limiting activation at saturating Ca2+. In previous studies, stepwise truncation of the C-terminal region of TnT increased activity in proportion to the number of positive charges eliminated. To define key basic residues more closely, we generated phosphomimetic-like mutants of TnT. Phosphomimetic mutants were chosen because of reports that phosphorylation of TnT, including sites within the C terminal region, depressed activity, contrary to our expectations. Four constructs were made where one or more Ser and Thr residues were replaced with Asp residues. The S275D and T277D mutants, near the IT helix and adjacent to basic residues, produced the greatest activation of ATPase rates in solution; the effects of the S275D mutant were recapitulated in muscle fiber preparations with enhanced myofilament Ca2+ sensitivity. Actin filaments containing S275D TnT were also shown to be incapable of populating the inactive state at low Ca2+ levels. Actin filaments containing both S275D/T284D were not statistically different from those containing only S275D in both solution and cardiac muscle preparation studies. Finally, actin filaments containing T284D TnT, closer to the C-terminus and not adjacent to a basic residue, had the smallest effect on activity. Thus, the effects of negative charge placement in the C-terminal region of TnT were greatest near the IT helix and adjacent to a basic residue.


Assuntos
Actinas , Troponina T , Humanos , Troponina T/genética , Troponina T/química , Actinas/química , Citoesqueleto de Actina , Miosinas/genética , Adenosina Trifosfatases , Cálcio/química , Tropomiosina/química
4.
Arch Biochem Biophys ; 726: 109301, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35661778

RESUMO

After the discovery of troponin by Ebashi almost sixty years ago the field of striated muscle regulation has made significant progress. In the 1970's the nascent troponin field gained momentum, including contributions by James D. Potter who established the stoichiometry of contractile proteins in the myofibril (Arch Biochem Biophys. 1974 Jun; 162(2):436-41. https://doi.org/10.1016/0003-9861(7490202-1)). This opened the door to refinement of competing models that described possible thick filament configurations. This study suggested the presence of one myosin per cross bridge and provided accurate calculations of the molar ratios of each protein - myosin: actin: tropomyosin: troponin T: troponin I: troponin C.


Assuntos
Miofibrilas , Tropomiosina , Actinas/metabolismo , Animais , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Miosinas/metabolismo , Coelhos , Tropomiosina/metabolismo , Troponina C/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753506

RESUMO

Every heartbeat relies on cyclical interactions between myosin thick and actin thin filaments orchestrated by rising and falling Ca2+ levels. Thin filaments are comprised of two actin strands, each harboring equally separated troponin complexes, which bind Ca2+ to move tropomyosin cables away from the myosin binding sites and, thus, activate systolic contraction. Recently, structures of thin filaments obtained at low (pCa ∼9) or high (pCa ∼3) Ca2+ levels revealed the transition between the Ca2+-free and Ca2+-bound states. However, in working cardiac muscle, Ca2+ levels fluctuate at intermediate values between pCa ∼6 and pCa ∼7. The structure of the thin filament at physiological Ca2+ levels is unknown. We used cryoelectron microscopy and statistical analysis to reveal the structure of the cardiac thin filament at systolic pCa = 5.8. We show that the two strands of the thin filament consist of a mixture of regulatory units, which are composed of Ca2+-free, Ca2+-bound, or mixed (e.g., Ca2+ free on one side and Ca2+ bound on the other side) troponin complexes. We traced troponin complex conformations along and across individual thin filaments to directly determine the structural composition of the cardiac native thin filament at systolic Ca2+ levels. We demonstrate that the two thin filament strands are activated stochastically with short-range cooperativity evident only on one of the two strands. Our findings suggest a mechanism by which cardiac muscle is regulated by narrow range Ca2+ fluctuations.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Cálcio/metabolismo , Miocárdio/química , Miosinas/química , Sístole , Troponina/química , Animais , Cálcio/análise , Microscopia Crioeletrônica , Conformação Proteica , Suínos
6.
J Biol Chem ; 295(47): 15913-15922, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32900850

RESUMO

Vertebrate striated muscle thin filaments are thought to be thermodynamically activated in response to an increase in Ca2+ concentration. We tested this hypothesis by measuring time intervals for gliding runs and pauses of individual skeletal muscle thin filaments in cycling myosin motility assays. A classic thermodynamic mechanism predicts that if chemical potential is constant, transitions between runs and pauses of gliding thin filaments will occur at constant rate as given by a Poisson distribution. In this scenario, rate is given by the odds of a pause, and hence, run times between pauses fit an exponential distribution that slopes negatively for all observable run times. However, we determined that relative density of observed run times fits an exponential only at low Ca2+ levels that activate filament gliding. Further titration with Ca2+, or adding excess regulatory proteins tropomyosin and troponin, shifted the relative density of short run times to fit the positive slope of a gamma distribution, which derives from waiting times between Poisson events. Events that arise during a run and prevent the chance of ending a run for a random interval of time account for the observed run time distributions, suggesting that the events originate with cycling myosin. We propose that regulatory proteins of the thin filament require the mechanical force of cycling myosin to achieve the transition state for activation. During activation, combinations of cycling myosin that contribute insufficient activation energy delay deactivation.


Assuntos
Citoesqueleto de Actina/química , Cálcio/química , Contração Muscular , Miosinas/química , Sarcômeros/química , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Miosinas/metabolismo , Coelhos , Sarcômeros/metabolismo
7.
Biochemistry ; 59(37): 3487-3497, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32840354

RESUMO

Calcium binding to troponin C (TnC) is insufficient for full activation of myosin ATPase activity by actin-tropomyosin-troponin. Previous attempts to investigate full activation utilized ATP-free myosin or chemically modified myosin to stabilize the active state of regulated actin. We utilized the Δ14-TnT and the A8V-TnC mutants to stabilize the activated state at saturating Ca2+ and to eliminate one of the inactive states at low Ca2+. The observed effects differed in solution studies and in the more ordered in vitro motility assay and in skinned cardiac muscle preparations. At saturating Ca2+, full activation with Δ14-TnT·A8V-TnC decreased the apparent KM for actin-activated ATPase activity compared to bare actin filaments. Rates of in vitro motility increased at both high and low Ca2+ with Δ14-TnT; the maximum shortening speed at high Ca2+ increased 1.8-fold. Cardiac muscle preparations exhibited increased Ca2+ sensitivity and large increases in resting force with either Δ14-TnT or Δ14-TnT·A8V-TnC. We also observed a significant increase in the maximal rate of tension redevelopment. The results of full activation with Ca2+ and Δ14-TnT·A8V-TnC confirmed and extended several earlier observations using other means of reaching full activation. Furthermore, at low Ca2+, elimination of the first inactive state led to partial activation. This work also confirms, in three distinct experimental systems, that troponin is able to stabilize the active state of actin-tropomyosin-troponin without the need for high-affinity myosin binding. The results are relevant to the reason for two inactive states and for the role of force producing myosin in regulation.


Assuntos
Actinas/metabolismo , Cálcio/metabolismo , Movimento Celular , Miocárdio/metabolismo , Tropomiosina/metabolismo , Troponina C/metabolismo , Troponina T/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Bovinos , Humanos , Miocárdio/citologia , Ligação Proteica , Troponina C/química , Troponina C/genética , Troponina T/química , Troponina T/genética
8.
Biochemistry ; 56(23): 2928-2937, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28530094

RESUMO

Striated muscle contraction is regulated by the actin-associated proteins tropomyosin and troponin. The extent of activation of myosin ATPase activity is lowest in the absence of both Ca2+ and activating cross-bridges (i.e., S1-ADP or rigor S1). Binding of activating species of myosin to actin at a saturating Ca2+ concentration stabilizes the most active state (M state) of the actin-tropomyosin-troponin complex (regulated actin). Ca2+ binding alone produces partial stabilization of the active state. The extent of stabilization at a saturating Ca2+ concentration depends on the isoform of the troponin subunits, the phosphorylation state of troponin, and, in the case of cardiac muscle, the presence of hypertrophic cardiomyopathy-producing mutants of troponin T and troponin I. Cardiac dysfunction is also associated with mutations of troponin C (TnC). Troponin C mutants A8V, C84Y, and D145E increase the Ca2+ sensitivity of ATPase activity. We show that these mutants change the distribution of regulated actin states. The A8V and C84Y TnC mutants decreased the inactive B state distribution slightly at low Ca2+ concentrations, but the D145E mutants had no effect on that state. All TnC mutants increased the level of the active M state compared to that of the wild type, at a saturating Ca2+ concentration. Troponin complexes that contained two mutations that stabilize the active M state, A8V TnC and Δ14 TnT, appeared to be completely in the active state in the presence of only Ca2+. Because Ca2+ gives full activation, in this situation, troponin must be capable of positioning tropomyosin in the active M state without the need for rigor myosin binding.


Assuntos
Actinas/metabolismo , Deleção de Genes , Mutação , Tropomiosina/metabolismo , Troponina C/metabolismo , Troponina T/metabolismo , Actinas/química , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Animais , Sinalização do Cálcio , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Bovinos , Humanos , Cinética , Radioisótopos de Fósforo , Multimerização Proteica , Estabilidade Proteica , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tropomiosina/química , Troponina C/química , Troponina C/genética , Troponina T/química , Troponina T/genética
9.
Biophys J ; 112(8): 1726-1736, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445763

RESUMO

The cardiac troponin C (TnC)-A8V mutation is associated with hypertrophic and restrictive cardiomyopathy (HCM and RCM) in human and mice. The residue affected lies in the N-helix, a region known to affect Ca2+-binding affinity to the N-terminal domain. Here we report on the functional effects of this mutation in skinned papillary muscle fibers from homozygous knock-in TnC-A8V mice. Muscle fibers from left ventricle were activated at 25°C under the ionic conditions of working cardiomyocytes. The pCa-tension relationship showed a 3× increase in Ca2+-sensitivity and a decrease (0.8×) in cooperativity (nH) in mutant fibers. The elementary steps of the cross-bridge (CB) cycle were investigated by sinusoidal analysis. The ATP study revealed that there is no significant change in the affinity of ATP (K1) for the myosin head. In TnC-A8V mutant fibers, the CB detachment rate (k2) and its equilibrium constant (K2) increased (1.5×). The phosphate study revealed that rate constant of the force-generation step (k4) decreased (0.5×), reversal step (k-4) increased (2×), and the phosphate-release step (1/K5) increased (2×). Pro-Q Diamond staining of the skinned fibers samples revealed no significant changes in total phosphorylation of multiple sarcomeric proteins. Further investigation using liquid chromatography-tandem mass spectrometry revealed hypophosphorylation of the rod domain of myosin heavy chain in TnC-A8V mutant fibers compared to wild-type. Immunoblotting confirmed the results observed in the mass spectrometry analysis. The results suggest perturbed CB kinetics-possibly caused by changes in the α-myosin heavy chain phosphorylation profile-as a novel mechanism, to our knowledge, by which a mutation in TnC can have rippling effects in the myofilament and contribute to the pathogenesis of HCM/RCM.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Miofibrilas/metabolismo , Subfragmentos de Miosina/metabolismo , Músculos Papilares/metabolismo , Troponina C/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Cromatografia Líquida , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Immunoblotting , Cinética , Camundongos Transgênicos , Cadeias Pesadas de Miosina/metabolismo , Fosforilação , Espectrometria de Massas em Tandem , Troponina C/genética
10.
Arch Biochem Biophys ; 601: 97-104, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26976709

RESUMO

Higher affinity for TnI explains how troponin C (TnC) carrying a causative hypertrophic cardiomyopathy mutation, TnC(A8V), sensitizes muscle cells to Ca(2+). Muscle fibers reconstituted with TnC(A8V) require ∼2.3-fold less [Ca(2+)] to achieve 50% maximum-tension compared to fibers reconstituted with wild-type TnC (TnC(WT)). Binding measurements rule out a significant change in N-terminus Ca(2+)-affinity of isolated TnC(A8V), and TnC(A8V) binds the switch-peptide of troponin-I (TnI(sp)) ∼1.6-fold more strongly than TnC(WT); thus we model the TnC-TnI(sp) interaction as competing with the TnI-actin interaction. Tension data are well-fit by a model constrained to conditions in which the affinity of TnC(A8V) for TnI(sp) is 1.5-1.7-fold higher than that of TnC(WT) at all [Ca(2+)]. Mean ATPase rates of reconstituted cardiac myofibrils is greater for TnC(A8V) than TnC(WT) at all [Ca(2+)], with statistically significant differences in the means at higher [Ca(2+)]. To probe TnC-TnI interaction in low Ca(2+), displacement of bis-ANS from TnI was monitored as a function of TnC. Whereas Ca(2+)-TnC(WT) displaces significantly more bis-ANS than Mg(2+)-TnC(WT), Ca(2+)-TnC(A8V) displaces probe equivalently to Mg(2+)-TnC(A8V) and Ca(2+)-TnC(WT), consistent with stronger Ca(2+)-independent TnC(A8V)-TnI(sp). A Matlab program for computing theoretical activation is reported. Our work suggests that contractility is constantly above normal in hearts made hypertrophic by TnC(A8V).


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Miocárdio/metabolismo , Troponina C/química , Troponina I/química , Adenosina Trifosfatases/química , Cálcio/química , Humanos , Imageamento Tridimensional , Microscopia de Fluorescência , Mutação , Contração Miocárdica , Miofibrilas/química , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Troponina C/genética , Troponina I/genética
11.
J Biol Chem ; 289(33): 23097-23111, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24973218

RESUMO

The cardiac troponin I (cTnI) R21C (cTnI-R21C) mutation has been linked to hypertrophic cardiomyopathy and renders cTnI incapable of phosphorylation by PKA in vivo. Echocardiographic imaging of homozygous knock-in mice expressing the cTnI-R21C mutation shows that they develop hypertrophy after 12 months of age and have abnormal diastolic function that is characterized by longer filling times and impaired relaxation. Electrocardiographic analyses show that older R21C mice have elevated heart rates and reduced cardiovagal tone. Cardiac myocytes isolated from older R21C mice demonstrate that in the presence of isoproterenol, significant delays in Ca(2+) decay and sarcomere relaxation occur that are not present at 6 months of age. Although isoproterenol and stepwise increases in stimulation frequency accelerate Ca(2+)-transient and sarcomere shortening kinetics in R21C myocytes from older mice, they are unable to attain the corresponding WT values. When R21C myocytes from older mice are treated with isoproterenol, evidence of excitation-contraction uncoupling is indicated by an elevation in diastolic calcium that is frequency-dissociated and not coupled to shorter diastolic sarcomere lengths. Myocytes from older mice have smaller Ca(2+) transient amplitudes (2.3-fold) that are associated with reductions (2.9-fold) in sarcoplasmic reticulum Ca(2+) content. This abnormal Ca(2+) handling within the cell may be attributed to a reduction (2.4-fold) in calsequestrin expression in conjunction with an up-regulation (1.5-fold) of Na(+)-Ca(2+) exchanger. Incubation of permeabilized cardiac fibers from R21C mice with PKA confirmed that the mutation prevents facilitation of mechanical relaxation. Altogether, these results indicate that the inability to enhance myofilament relaxation through cTnI phosphorylation predisposes the heart to abnormal diastolic function, reduced accessibility of cardiac reserves, dysautonomia, and hypertrophy.


Assuntos
Sinalização do Cálcio , Cardiomiopatia Hipertrófica/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diástole , Miócitos Cardíacos/metabolismo , Troponina I/metabolismo , Animais , Cardiomiopatia Hipertrófica/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Fosforilação/fisiologia , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Troponina I/genética
12.
Biophys J ; 104(9): 1979-88, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23663841

RESUMO

Three troponin T (TnT) mutants that cause hypertrophic, restrictive, and dilated cardiomyopathy (I79N, ΔE96, and ΔK210, respectively), were examined using the thin-filament extraction/reconstitution technique. Effects of Ca(2+), ATP, phosphate, and ADP concentrations on force and its transients were studied at 25°C. Maximal Ca(2+) tension (THC) and Ca(2+)-activatable tension (Tact), respectively, were similar among I79N, ΔE96, and WT, whereas ΔK210 led to a significantly lower THC (∼20% less) and Tact (∼25% less) than did WT. In pCa solution containing 8 mM Pi and ionic strength adjusted to 200 mM, the Ca(2+) sensitivity (pCa50) of I79N (5.63 ± 0.02) and ΔE96 (5.60 ± 0.03) was significantly greater than that of WT (5.45 ± 0.04), but the pCa50 of ΔK210 (5.54 ± 0.04) remained similar to that of WT. Five equilibrium constants were deduced using sinusoidal analysis. All three mutants showed significantly lower K0 (ADP association constant) and larger K4 (equilibrium constant of force generation step) relative to the corresponding values for WT. I79N and ΔK210 were associated with a K2 (equilibrium constant of cross-bridge detachment step) significantly lower than that of ΔE96 and WT. These results demonstrated that at pCa 4.66, the force/cross-bridge is ∼18% less in I79N and ∼41% less in ΔK210 than that in WT. These results indicate that the molecular pathogenesis of the cardiac TnT mutation-related cardiomyopathies is different for each mutation.


Assuntos
Cardiomiopatias/genética , Mutação , Troponina T/genética , Troponina T/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Humanos , Fosfatos/metabolismo
14.
J Biol Chem ; 285(23): 17371-9, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20371872

RESUMO

In this study we explore the mechanisms by which a double mutation (E59D/D75Y) in cardiac troponin C (CTnC) associated with dilated cardiomyopathy reduces the Ca(2+)-activated maximal tension of cardiac muscle. Studying the single mutants (i.e. E59D or D75Y) indicates that D75Y, but not E59D, causes a reduction in the calcium affinity of CTnC in troponin complex, regulated thin filaments (RTF), and the Ca(2+) sensitivity of contraction and ATPase in cardiac muscle preparations. However, both D75Y and E59D are required to reduce the actomyosin ATPase activity and maximal force in muscle fibers, indicating that E59D enhances the effects of D75Y. Part of the reduction in force/ATPase may be due to a defect in the interactions between CTnC and cardiac troponin T, which are known to be necessary for ATPase activation. An additional mechanism for the reduction in force/ATPase comes from measurements of the binding stoichiometry of myosin subfragment-1 (S-1) to the RTF. Using wild type RTFs, 4.8 mol S-1 was bound per mol filament (seven actins), whereas with E59D/D75Y RTFs, the number of binding sites was reduced by approximately 23% to 3.7. Altogether, these results suggest that the reduction in force and ATPase activation is possibly due to a thin filament conformation that promotes fewer accessible S-1-binding sites. In the absence of any family segregation data, the functional results presented here support the concept that this is likely a dilated cardiomyopathy-causing mutation.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Mutação , Troponina C/genética , Actinas/química , Adenosina Trifosfatases/química , Animais , Sítios de Ligação , Cálcio/química , Ativação Enzimática , Humanos , Contração Muscular , Miosinas/química , Ligação Proteica , Conformação Proteica , Suínos
15.
Transpl Int ; 23(3): 307-12, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19843293

RESUMO

The aim of this study was to retrospectively evaluate safety and feasibility of sirolimus (SRL) monotherapy in kidney transplant recipients. Patients older than 18 years, with monotherapy prescribed for more than 1 month and at least 6 months of follow-up were included. We analysed the data from 138 patients. Mean time period between transplantation and start of monotherapy was 6.5 +/- 4.1 years.The most frequent reason was minimization of immunosuppression followed by malignancy. Acute rejection rate was 1.4% at 12 months (two episodes). Graft and patient survival were 94.2% and 97.1% respectively. Mean follow-up after initiation of monotherapy was 29.4 months. Two patients died as a result of cardiovascular diseases and two because of malignancy. Percentage of withdrawal from monotherapy was 14%. SRL trough levels were 10.2 +/- 2.3 ng/ml at baseline and 9.6 6 +/- 3.3 ng/ml at 12 months. Mean glomerular filtration rate was 48.4 ml/min/1.73 m(2) at baseline and 47.7 ml/min/1.73 m(2) at 12 months. Proteinuria was 499.7 mg/24 h at baseline and 543 +/- 794 mg/24 h at 12 months. No significant changes in lipids, glucose, or hemoglobin occurred, although the percentage of patients treated with statins and Epo increased at the end of the follow-up. SRL monotherapy is suitable as long-term immunosuppression in selected patients with no significantly increased risk of late acute rejection.


Assuntos
Imunossupressores/uso terapêutico , Transplante de Rim/imunologia , Sirolimo/uso terapêutico , Adulto , Idoso , Feminino , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/efeitos dos fármacos , Humanos , Terapia de Imunossupressão/efeitos adversos , Terapia de Imunossupressão/métodos , Imunossupressores/administração & dosagem , Transplante de Rim/fisiologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sirolimo/administração & dosagem , Análise de Sobrevida , Fatores de Tempo
17.
Arq. bras. neurocir ; 28(3): 87-96, set. 2009. ilus
Artigo em Português | LILACS | ID: lil-601605

RESUMO

Sistemas valvulares para controle de hidrocefalia funcionam por meio de diferencial de pressão. As inovações tecnológicas surgidas após a primeira geração de válvulas tentam amenizar o desequilíbrio hidráulico causado pelo desvio artificial do liquor para fora da cavidade intracraniana causado pelo sistema valvular, e que agora sofrem com forças gravitacionais antes compensadas por mecanismos fisiológicos. Este trabalho esclarece ao neurocirurgião os parâmetros que qualificam o nível de desempenho das válvulas frequentemente utilizadas na prática neurocirúrgica, priorizando o entendimento do gráfico“pressão versus vazão”. Para tal, os gráficos foram exemplificados por intermédio do teste de uma válvula de hidrocefalia de primeira geração disponibilizada recentemente, por meio dos testes da ISO 7197.


Shunts for hydrocephalus work through a pressure differential. The technological innovations following1st generation shunts try to restore the hydrodynamic disequilibrium caused by the artificial CSF shift outwards the intracranial cavity caused by the shunt and that now suffer with gravitational forces formerly compensated by physiological mechanisms. This article describes to the neurosurgeon the parameters which qualify a shunt performance level of a device, giving priority to the pressure-flow relationship. To accomplish that, all ISO 7197 tests were exemplified using a 1st generation shunt system recently introduced into the Brazilian market.


Assuntos
Derivação Ventriculoperitoneal/instrumentação , Derivação Ventriculoperitoneal/métodos , Hidrocefalia
18.
J Biol Chem ; 283(4): 2156-66, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18032382

RESUMO

Restrictive cardiomyopathy (RCM) is a rare disorder characterized by impaired ventricular filling with decreased diastolic volume. We are reporting the functional effects of the first cardiac troponin T (CTnT) mutation linked to infantile RCM resulting from a de novo deletion mutation of glutamic acid 96. The mutation was introduced into adult and fetal isoforms of human cardiac TnT (HCTnT3-DeltaE96 and HCTnT1-DeltaE106, respectively) and studied with either cardiac troponin I (CTnI) or slow skeletal troponin I (SSTnI). Skinned cardiac fiber measurements showed a large leftward shift in the Ca(2+) sensitivity of force development with no differences in the maximal force. HCTnT1-DeltaE106 showed a significant increase in the activation of actomyosin ATPase with either CTnI or SSTnI, whereas HCTnT3-DeltaE96 was only able to increase the ATPase activity with CTnI. Both mutants showed an impaired ability to inhibit the ATPase activity. The capacity of the CTnI.CTnC and SSTnI.CTnC complexes to fully relax the fibers after TnT displacement was also compromised. Experiments performed using fetal troponin isoforms showed a less severe impact compared with the adult isoforms, which is consistent with the cardioprotective role of SSTnI and the rapid onset of RCM after birth following the isoform switch. These data indicate that troponin mutations related to RCM may have specific functional phenotypes, including large leftward shifts in the Ca(2+) sensitivity and impaired abilities to inhibit ATPase and to relax skinned fibers. All of this would account for and contribute to the severe diastolic dysfunction seen in RCM.


Assuntos
Sequência de Aminoácidos , Cálcio/metabolismo , Cardiomiopatia Restritiva/metabolismo , Cardiopatias Congênitas/metabolismo , Deleção de Sequência , Troponina T/metabolismo , Sequência de Aminoácidos/genética , Animais , Cálcio/química , Cardiomiopatia Restritiva/genética , Cardiopatias Congênitas/genética , Humanos , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Relaxamento Muscular/genética , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Suínos , Troponina T/química , Troponina T/genética , Disfunção Ventricular/genética , Disfunção Ventricular/metabolismo
19.
Transpl Int ; 18(1): 22-8, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15612979

RESUMO

We report the 48-month results of a trial testing whether withdrawal of cyclosporine (CsA) from a sirolimus (SRL)-CsA-steroid (ST) regimen would impact renal allograft survival. Eligible patients receiving SRL-CsA-ST from transplantation were randomly assigned at 3 months to remain on triple therapy (SRL-CsA-ST, n = 215) or to have CsA withdrawn and SRL trough concentrations increased (SRL-ST, n = 215). SRL-ST therapy resulted in significantly better graft survival, either when including death with a functioning graft as an event (84.2% vs. 91.5%, P = 0.024) or when censoring it (90.6% vs. 96.1%, P = 0.026). Calculated glomerular filtration rate (43.8 vs. 58.3 ml/min, P < 0.001) and mean arterial blood pressure (101.3 vs. 97.1 mmHg, P = 0.047) were also improved with SRL-ST. Differences in the incidences of biopsy-proven acute rejection after randomization (6.5% vs. 10.2%, SRL-CsA-ST versus SRL-ST, respectively) and mortality (7.9% vs. 4.7%) were not significant. SRL-CsA-ST-treated patients had significantly higher incidences of adverse events generally associated with CsA, whereas those in the SRL-ST group experienced greater frequencies of events commonly related to higher trough levels of SRL. In conclusion, early withdrawal of CsA from a SRL-CsA-ST regimen rapidly improves renal function and ultimately results in better graft survival.


Assuntos
Sobrevivência de Enxerto/fisiologia , Imunossupressores/uso terapêutico , Transplante de Rim/fisiologia , Sirolimo/uso terapêutico , Corticosteroides/uso terapêutico , Ciclosporina/uso terapêutico , Quimioterapia Combinada , Seguimentos , Taxa de Filtração Glomerular , Sobrevivência de Enxerto/efeitos dos fármacos , Sobrevivência de Enxerto/imunologia , Humanos , Transplante de Rim/imunologia , Transplante de Rim/mortalidade , Cooperação do Paciente , Estomatite/induzido quimicamente , Estomatite/epidemiologia , Análise de Sobrevida , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA