Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 52(3): 1085-1098, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38716888

RESUMO

In vivo, muscle and neuronal cells are post-mitotic, and their function is predominantly regulated by proteostasis, a multilayer molecular process that maintains a delicate balance of protein homeostasis. The ubiquitin-proteasome system (UPS) is a key regulator of proteostasis. A dysfunctional UPS is a hallmark of muscle ageing and is often impacted in neuromuscular disorders (NMDs). Malfunction of the UPS often results in aberrant protein accumulation which can lead to protein aggregation and/or mis-localization affecting its function. Deubiquitinating enzymes (DUBs) are key players in the UPS, controlling protein turnover and maintaining the free ubiquitin pool. Several mutations in DUB encoding genes are linked to human NMDs, such as ATXN3, OTUD7A, UCHL1 and USP14, whilst other NMDs are associated with dysregulation of DUB expression. USP5, USP9X and USP14 are implicated in synaptic transmission and remodeling at the neuromuscular junction. Mice lacking USP19 show increased maintenance of lean muscle mass. In this review, we highlight the involvement of DUBs in muscle physiology and NMDs, particularly in processes affecting muscle regeneration, degeneration and inflammation following muscle injury. DUBs have recently garnered much respect as promising drug targets, and their roles in muscle maturation, regeneration and degeneration may provide the framework for novel therapeutics to treat muscular disorders including NMDs, sarcopenia and cachexia.


Assuntos
Enzimas Desubiquitinantes , Humanos , Animais , Enzimas Desubiquitinantes/metabolismo , Músculo Esquelético/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Doenças Neuromusculares/metabolismo , Doenças Neuromusculares/genética , Doenças Neuromusculares/fisiopatologia , Doenças Neuromusculares/enzimologia , Doenças Musculares/metabolismo , Doenças Musculares/genética , Camundongos , Proteostase
2.
iScience ; 27(4): 109593, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38632987

RESUMO

Precise regulation of Type I interferon signaling is crucial for combating infection and cancer while avoiding autoimmunity. Type I interferon signaling is negatively regulated by USP18. USP18 cleaves ISG15, an interferon-induced ubiquitin-like modification, via its canonical catalytic function, and inhibits Type I interferon receptor activity through its scaffold role. USP18 loss-of-function dramatically impacts immune regulation, pathogen susceptibility, and tumor growth. However, prior studies have reached conflicting conclusions regarding the relative importance of catalytic versus scaffold function. Here, we develop biochemical and cellular methods to systematically define the physiological role of USP18. By comparing a patient-derived mutation impairing scaffold function (I60N) to a mutation disrupting catalytic activity (C64S), we demonstrate that scaffold function is critical for cancer cell vulnerability to Type I interferon. Surprisingly, we discovered that human USP18 exhibits minimal catalytic activity, in stark contrast to mouse USP18. These findings resolve human USP18's mechanism-of-action and enable USP18-targeted therapeutics.

3.
Nat Immunol ; 25(5): 834-846, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561495

RESUMO

Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.


Assuntos
Antígenos CD , Apirase , Cadeias alfa de Integrinas , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Antígenos CD/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Cadeias alfa de Integrinas/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia
4.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38453365

RESUMO

KRAS is a proto-oncogene encoding a small GTPase. Mutations contribute to ∼30% of human solid tumours, including lung adenocarcinoma, pancreatic, and colorectal carcinomas. Most KRAS activating mutations interfere with GTP hydrolysis, essential for its role as a molecular switch, leading to alterations in their molecular environment and oncogenic signalling. However, the precise signalling cascades these mutations affect are poorly understood. Here, APEX2 proximity labelling was used to profile the molecular environment of WT, G12D, G13D, and Q61H-activating KRAS mutants under starvation and stimulation conditions. Through quantitative proteomics, we demonstrate the presence of known KRAS interactors, including ARAF and LZTR1, which are differentially captured by WT and KRAS mutants. Notably, the KRAS mutations G12D, G13D, and Q61H abrogate their association with LZTR1, thereby affecting turnover. Elucidating the implications of LZTR1-mediated regulation of KRAS protein levels in cancer may offer insights into therapeutic strategies targeting KRAS-driven malignancies.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Mutação , Ubiquitina-Proteína Ligases , Proteínas Culina/genética , Fatores de Transcrição
5.
J Med Chem ; 67(6): 4496-4524, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38488146

RESUMO

Dysregulation of the ubiquitin-proteasome systems is a hallmark of various disease states including neurodegenerative diseases and cancer. Ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is expressed primarily in the central nervous system under normal physiological conditions, however, is considered an oncogene in various cancers, including melanoma, lung, breast, and lymphoma. Thus, UCHL1 inhibitors could serve as a viable treatment strategy against these aggressive cancers. Herein, we describe a covalent fragment screen that identified the chloroacetohydrazide scaffold as a covalent UCHL1 inhibitor. Subsequent optimization provided an improved fragment with single-digit micromolar potency against UCHL1 and selectivity over the closely related UCHL3. The molecule demonstrated efficacy in cellular assays of metastasis. Additionally, we report a ligand-bound crystal structure of the most potent molecule in complex with UCHL1, providing insight into the binding mode and information for future optimization.


Assuntos
Neoplasias , Ubiquitina Tiolesterase , Humanos , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Mama , Complexo de Endopeptidases do Proteassoma
6.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958498

RESUMO

Bioactive lipids are involved in cellular signalling events with links to human disease. Many of these are involved in inflammation under normal and pathological conditions. Despite being attractive molecules from a pharmacological point of view, the detection and quantification of lipids has been a major challenge. Here, we have optimised a liquid chromatography-dynamic multiple reaction monitoring-targeted mass spectrometry (LC-dMRM-MS) approach to profile eicosanoids and fatty acids in biological samples. In particular, by applying this analytic workflow to study a cellular model of chronic myeloid leukaemia (CML), we found that the levels of intra- and extracellular 2-Arachidonoylglycerol (2-AG), intracellular Arachidonic Acid (AA), extracellular Prostaglandin F2α (PGF2α), extracellular 5-Hydroxyeicosatetraenoic acid (5-HETE), extracellular Palmitic acid (PA, C16:0) and extracellular Stearic acid (SA, C18:0), were altered in response to immunomodulation by type I interferon (IFN-I), a currently approved treatment for CML. Our observations indicate changes in eicosanoid and fatty acid metabolism, with potential relevance in the context of cancer inflammation and CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Ácidos Graxos , Interferons , Espectrometria de Massas em Tandem/métodos , Eicosanoides/metabolismo , Inflamação
7.
Mol Cell Proteomics ; 22(8): 100609, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37385347

RESUMO

Dampening functional levels of the mitochondrial deubiquitylating enzyme Ubiquitin-specific protease 30 (USP30) has been suggested as an effective therapeutic strategy against neurodegenerative disorders such as Parkinson's Disease. USP30 inhibition may counteract the deleterious effects of impaired turnover of damaged mitochondria, which is inherent to both familial and sporadic forms of the disease. Small-molecule inhibitors targeting USP30 are currently in development, but little is known about their precise nature of binding to the protein. We have integrated biochemical and structural approaches to gain novel mechanistic insights into USP30 inhibition by a small-molecule benzosulfonamide-containing compound, USP30inh. Activity-based protein profiling mass spectrometry confirmed target engagement, high selectivity, and potency of USP30inh for USP30 against 49 other deubiquitylating enzymes in a neuroblastoma cell line. In vitro characterization of USP30inh enzyme kinetics inferred slow and tight binding behavior, which is comparable with features of covalent modification of USP30. Finally, we blended hydrogen-deuterium exchange mass spectrometry and computational docking to elucidate the molecular architecture and geometry of USP30 complex formation with USP30inh, identifying structural rearrangements at the cleft of the USP30 thumb and palm subdomains. These studies suggest that USP30inh binds to this thumb-palm cleft, which guides the ubiquitin C terminus into the active site, thereby preventing ubiquitin binding and isopeptide bond cleavage, and confirming its importance in the inhibitory process. Our data will pave the way for the design and development of next-generation inhibitors targeting USP30 and associated deubiquitinylases.


Assuntos
Enzimas Desubiquitinantes , Mitofagia , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sulfonamidas/farmacologia
8.
Mol Cell Proteomics ; 21(12): 100419, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36182100

RESUMO

Understanding how connective tissue cells respond to mechanical stimulation is important to human health and disease processes in musculoskeletal diseases. Injury to articular cartilage is a key risk factor in predisposition to tissue damage and degenerative osteoarthritis. Recently, we have discovered that mechanical injury to connective tissues including murine and porcine articular cartilage causes a significant increase in lysine-63 polyubiquitination. Here, we identified the ubiquitin signature that is unique to injured articular cartilage tissue upon mechanical injury (the "mechano-ubiquitinome"). A total of 463 ubiquitinated peptides were identified, with an enrichment of ubiquitinated peptides of proteins involved in protein processing in the endoplasmic reticulum (ER), also known as the ER-associated degradation response, including YOD1, BRCC3, ATXN3, and USP5 as well as the ER stress regulators, RAD23B, VCP/p97, and Ubiquilin 1. Enrichment of these proteins suggested an injury-induced ER stress response and, for instance, ER stress markers DDIT3/CHOP and BIP/GRP78 were upregulated following cartilage injury on the protein and gene expression levels. Similar ER stress induction was also observed in response to tail fin injury in zebrafish larvae, suggesting a generic response to tissue injury. Furthermore, a rapid increase in global DUB activity following injury and significant activity in human osteoarthritic cartilage was observed using DUB-specific activity probes. Combined, these results implicate the involvement of ubiquitination events and activation of a set of DUBs and ER stress regulators in cellular responses to cartilage tissue injury and in osteoarthritic cartilage tissues. This link through the ER-associated degradation pathway makes this protein set attractive for further investigation in in vivo models of tissue injury and for targeting in osteoarthritis and related musculoskeletal diseases.


Assuntos
Cartilagem Articular , Doenças Musculoesqueléticas , Osteoartrite , Humanos , Animais , Camundongos , Suínos , Cartilagem Articular/metabolismo , Peixe-Zebra/metabolismo , Ubiquitinação , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Ubiquitina/metabolismo , Peptídeos/metabolismo , Doenças Musculoesqueléticas/metabolismo , Osteoartrite/metabolismo
9.
Elife ; 102021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636321

RESUMO

Lung squamous cell carcinoma (LSCC) is a considerable global health burden, with an incidence of over 600,000 cases per year. Treatment options are limited, and patient's 5-year survival rate is less than 5%. The ubiquitin-specific protease 28 (USP28) has been implicated in tumourigenesis through its stabilization of the oncoproteins c-MYC, c-JUN, and Δp63. Here, we show that genetic inactivation of Usp28-induced regression of established murine LSCC lung tumours. We developed a small molecule that inhibits USP28 activity in the low nanomole range. While displaying cross-reactivity against the closest homologue USP25, this inhibitor showed a high degree of selectivity over other deubiquitinases. USP28 inhibitor treatment resulted in a dramatic decrease in c-MYC, c-JUN, and Δp63 proteins levels and consequently induced substantial regression of autochthonous murine LSCC tumours and human LSCC xenografts, thereby phenocopying the effect observed by genetic deletion. Thus, USP28 may represent a promising therapeutic target for the treatment of squamous cell lung carcinoma.


Assuntos
Proteínas de Ligação a DNA/genética , Deleção de Genes , Neoplasias Pulmonares/genética , Neoplasias de Células Escamosas/genética , Fatores de Transcrição/genética , Ubiquitina Tiolesterase/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/metabolismo
10.
Nat Immunol ; 22(11): 1416-1427, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663977

RESUMO

Ubiquitin-like protein ISG15 (interferon-stimulated gene 15) (ISG15) is a ubiquitin-like modifier induced during infections and involved in host defense mechanisms. Not surprisingly, many viruses encode deISGylating activities to antagonize its effect. Here we show that infection by Zika, SARS-CoV-2 and influenza viruses induce ISG15-modifying enzymes. While influenza and Zika viruses induce ISGylation, SARS-CoV-2 triggers deISGylation instead to generate free ISG15. The ratio of free versus conjugated ISG15 driven by the papain-like protease (PLpro) enzyme of SARS-CoV-2 correlates with macrophage polarization toward a pro-inflammatory phenotype and attenuated antigen presentation. In vitro characterization of purified wild-type and mutant PLpro revealed its strong deISGylating over deubiquitylating activity. Quantitative proteomic analyses of PLpro substrates and secretome from SARS-CoV-2-infected macrophages revealed several glycolytic enzymes previously implicated in the expression of inflammatory genes and pro-inflammatory cytokines, respectively. Collectively, our results indicate that altered free versus conjugated ISG15 dysregulates macrophage responses and probably contributes to the cytokine storms triggered by SARS-CoV-2.


Assuntos
COVID-19/imunologia , Citocinas/metabolismo , Inflamação/imunologia , Macrófagos/imunologia , SARS-CoV-2/fisiologia , Ubiquitinas/metabolismo , Diferenciação Celular , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Citocinas/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Evasão da Resposta Imune , Imunidade Inata , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Células-Tronco Pluripotentes/citologia , Ubiquitinação , Ubiquitinas/genética , Zika virus/fisiologia , Infecção por Zika virus/imunologia
11.
J Cell Biol ; 220(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507233

RESUMO

When a ribosome stalls during translation, it runs the risk of collision with a trailing ribosome. Such an encounter leads to the formation of a stable di-ribosome complex, which needs to be resolved by a dedicated machinery. The initial stalling and the subsequent resolution of di-ribosomal complexes requires activity of Makorin and ZNF598 ubiquitin E3 ligases, respectively, through ubiquitylation of the eS10 and uS10 subunits of the ribosome. We have developed a specific small-molecule inhibitor of the deubiquitylase USP9X. Proteomics analysis, following inhibitor treatment of HCT116 cells, confirms previous reports linking USP9X with centrosome-associated protein stability but also reveals a loss of Makorin 2 and ZNF598. We show that USP9X interacts with both these ubiquitin E3 ligases, regulating their abundance through the control of protein stability. In the absence of USP9X or following chemical inhibition of its catalytic activity, levels of Makorins and ZNF598 are diminished, and the ribosomal quality control pathway is impaired.


Assuntos
Ribossomos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Anticorpos/metabolismo , Biocatálise , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Estabilidade Proteica , Reprodutibilidade dos Testes , Ribonucleoproteínas/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores
12.
Br J Cancer ; 124(4): 817-830, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33214684

RESUMO

BACKGROUND: Interferon (IFN) signalling pathways, a key element of the innate immune response, contribute to resistance to conventional chemotherapy, radiotherapy, and immunotherapy, and are often deregulated in cancer. The deubiquitylating enzyme USP18 is a major negative regulator of the IFN signalling cascade and is the predominant human protease that cleaves ISG15, a ubiquitin-like protein tightly regulated in the context of innate immunity, from its modified substrate proteins in vivo. METHODS: In this study, using advanced proteomic techniques, we have significantly expanded the USP18-dependent ISGylome and proteome in a chronic myeloid leukaemia (CML)-derived cell line. USP18-dependent effects were explored further in CML and colorectal carcinoma cellular models. RESULTS: Novel ISGylation targets were characterised that modulate the sensing of innate ligands, antigen presentation and secretion of cytokines. Consequently, CML USP18-deficient cells are more antigenic, driving increased activation of cytotoxic T lymphocytes (CTLs) and are more susceptible to irradiation. CONCLUSIONS: Our results provide strong evidence for USP18 in regulating antigenicity and radiosensitivity, highlighting its potential as a cancer target.


Assuntos
Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/imunologia , Citocinas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitinas/metabolismo , Variação Antigênica , Linhagem Celular Tumoral , Neoplasias Colorretais/radioterapia , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/radioterapia , Tolerância a Radiação/genética , Tolerância a Radiação/imunologia , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/genética
13.
Cancer Res ; 80(22): 5076-5088, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33004351

RESUMO

Approximately 70% of breast cancers express estrogen receptor α (ERα) and depend on this key transcriptional regulator for proliferation and differentiation. While patients with this disease can be treated with targeted antiendocrine agents, drug resistance remains a significant issue, with almost half of patients ultimately relapsing. Elucidating the mechanisms that control ERα function may further our understanding of breast carcinogenesis and reveal new therapeutic opportunities. Here, we investigated the role of deubiquitinases (DUB) in regulating ERα in breast cancer. An RNAi loss-of-function screen in breast cancer cells targeting all DUBs identified USP11 as a regulator of ERα transcriptional activity, which was further validated by assessment of direct transcriptional targets of ERα. USP11 expression was induced by estradiol, an effect that was blocked by tamoxifen and not observed in ERα-negative cells. Mass spectrometry revealed a significant change to the proteome and ubiquitinome in USP11-knockdown (KD) cells in the presence of estradiol. RNA sequencing in LCC1 USP11-KD cells revealed significant suppression of cell-cycle-associated and ERα target genes, phenotypes that were not observed in LCC9 USP11-KD, antiendocrine-resistant cells. In a breast cancer patient cohort coupled with in silico analysis of publicly available cohorts, high expression of USP11 was significantly associated with poor survival in ERα-positive (ERα+) patients. Overall, this study highlights a novel role for USP11 in the regulation of ERα activity, where USP11 may represent a prognostic marker in ERα+ breast cancer. SIGNIFICANCE: A newly identified role for USP11 in ERα transcriptional activity represents a novel mechanism of ERα regulation and a pathway to be exploited for the management of ER-positive breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Enzimas Desubiquitinantes/fisiologia , Receptor alfa de Estrogênio/metabolismo , Tioléster Hidrolases/fisiologia , Transativadores/fisiologia , Neoplasias da Mama/química , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/efeitos dos fármacos , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/genética , Feminino , Inativação Gênica , Genes cdc , Humanos , Fenótipo , Prognóstico , Proteoma , Tamoxifeno/farmacologia , Tioléster Hidrolases/efeitos dos fármacos
14.
Biomolecules ; 10(10)2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080838

RESUMO

Covalent attachment of ubiquitin, a small globular polypeptide, to protein substrates is a key post-translational modification that determines the fate, function, and turnover of most cellular proteins. Ubiquitin modification exists as mono- or polyubiquitin chains involving multiple ways how ubiquitin C-termini are connected to lysine, perhaps other amino acid side chains, and N-termini of proteins, often including branching of the ubiquitin chains. Understanding this enormous complexity in protein ubiquitination, the so-called 'ubiquitin code', in combination with the ∼1000 enzymes involved in controlling ubiquitin recognition, conjugation, and deconjugation, calls for novel developments in analytical techniques. Here, we review different headways in the field mainly driven by mass spectrometry and chemical biology, referred to as "ubiquitomics", aiming to understand this system's biological diversity.


Assuntos
Processamento de Proteína Pós-Traducional/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina/genética , Ubiquitinação/genética , Humanos , Poliubiquitina/genética , Transdução de Sinais/genética
15.
Life Sci Alliance ; 3(8)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32636217

RESUMO

The mitochondrial deubiquitylase USP30 negatively regulates the selective autophagy of damaged mitochondria. We present the characterisation of an N-cyano pyrrolidine compound, FT3967385, with high selectivity for USP30. We demonstrate that ubiquitylation of TOM20, a component of the outer mitochondrial membrane import machinery, represents a robust biomarker for both USP30 loss and inhibition. A proteomics analysis, on a SHSY5Y neuroblastoma cell line model, directly compares the effects of genetic loss of USP30 with chemical inhibition. We have thereby identified a subset of ubiquitylation events consequent to mitochondrial depolarisation that are USP30 sensitive. Within responsive elements of the ubiquitylome, several components of the outer mitochondrial membrane transport (TOM) complex are prominent. Thus, our data support a model whereby USP30 can regulate the availability of ubiquitin at the specific site of mitochondrial PINK1 accumulation following membrane depolarisation. USP30 deubiquitylation of TOM complex components dampens the trigger for the Parkin-dependent amplification of mitochondrial ubiquitylation leading to mitophagy. Accordingly, PINK1 generation of phospho-Ser65 ubiquitin proceeds more rapidly in cells either lacking USP30 or subject to USP30 inhibition.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Tioléster Hidrolases/metabolismo , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/fisiologia , Membranas Mitocondriais/fisiologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Células-Tronco Neurais/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Tioléster Hidrolases/fisiologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
J Med Chem ; 63(7): 3756-3762, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32109059

RESUMO

Deubiquitinating enzymes (DUBs) are a growing target class across multiple disease states, with several inhibitors now reported. b-AP15 and VLX1570 are two structurally related USP14/UCH-37 inhibitors. Through a proteomic approach, we demonstrate that these compounds target a diverse range of proteins, resulting in the formation of higher molecular weight (MW) complexes. Activity-based proteome profiling identified CIAPIN1 as a submicromolar covalent target of VLX1570, and further analysis demonstrated that high MW complex formation leads to aggregation of CIAPIN1 in intact cells. Our results suggest that in addition to DUB inhibition, these compounds induce nonspecific protein aggregation, providing molecular explanation for general cellular toxicity.


Assuntos
Azepinas/farmacologia , Compostos de Benzilideno/farmacologia , Enzimas Desubiquitinantes/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Piperidonas/farmacologia , Multimerização Proteica/efeitos dos fármacos , Azepinas/química , Compostos de Benzilideno/química , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Enzimas Desubiquitinantes/química , Inibidores Enzimáticos/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Piperidonas/química , Proteoma/química , Proteoma/metabolismo , Proteômica
17.
Front Chem ; 7: 592, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555637

RESUMO

Enzymes that bind and process ubiquitin, a small 76-amino-acid protein, have been recognized as pharmacological targets in oncology, immunological disorders, and neurodegeneration. Mass spectrometry technology has now reached the capacity to cover the proteome with enough depth to interrogate entire biochemical pathways including those that contain DUBs and E3 ligase substrates. We have recently characterized the breast cancer cell (MCF7) deep proteome by detecting and quantifying ~10,000 proteins, and within this data set, we can detect endogenous expression of 65 deubiquitylating enzymes (DUBs), whereas matching transcriptomics detected 78 DUB mRNAs. Since enzyme activity provides another meaningful layer of information in addition to the expression levels, we have combined advanced mass spectrometry technology, pre-fractionation, and more potent/selective ubiquitin active-site probes with propargylic-based electrophiles to profile 74 DUBs including distinguishable isoforms for 5 DUBs in MCF7 crude extract material. Competition experiments with cysteine alkylating agents and pan-DUB inhibitors combined with probe labeling revealed the proportion of active cellular DUBs directly engaged with probes by label-free quantitative (LFQ) mass spectrometry. This demonstrated that USP13, 39, and 40 are non-reactive to probe, indicating restricted enzymatic activity under these cellular conditions. Our extended chemoproteomics workflow increases depth of covering the active DUBome, including isoform-specific resolution, and provides the framework for more comprehensive cell-based small-molecule DUB selectivity profiling.

18.
Nature ; 550(7677): 481-486, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29045389

RESUMO

Ubiquitination controls the stability of most cellular proteins, and its deregulation contributes to human diseases including cancer. Deubiquitinases remove ubiquitin from proteins, and their inhibition can induce the degradation of selected proteins, potentially including otherwise 'undruggable' targets. For example, the inhibition of ubiquitin-specific protease 7 (USP7) results in the degradation of the oncogenic E3 ligase MDM2, and leads to re-activation of the tumour suppressor p53 in various cancers. Here we report that two compounds, FT671 and FT827, inhibit USP7 with high affinity and specificity in vitro and within human cells. Co-crystal structures reveal that both compounds target a dynamic pocket near the catalytic centre of the auto-inhibited apo form of USP7, which differs from other USP deubiquitinases. Consistent with USP7 target engagement in cells, FT671 destabilizes USP7 substrates including MDM2, increases levels of p53, and results in the transcription of p53 target genes, induction of the tumour suppressor p21, and inhibition of tumour growth in mice.


Assuntos
Piperidinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Animais , Apoenzimas/antagonistas & inibidores , Apoenzimas/química , Apoenzimas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Feminino , Humanos , Camundongos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/patologia , Piperidinas/síntese química , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirazóis/síntese química , Pirimidinas/síntese química , Especificidade por Substrato , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Peptidase 7 Específica de Ubiquitina/química , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Front Genet ; 7: 133, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27516771

RESUMO

Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA