RESUMO
The blood-brain barrier (BBB) presents a formidable challenge in delivering therapeutic agents to the central nervous system. Ultrasound-mediated BBB disruption has emerged as a promising non-invasive technique to enhance drug delivery to the brain. This manuscript reviews fundamental principles of ultrasound-based techniques and their mechanisms of action in temporarily permeabilizing the BBB. Clinical trials employing ultrasound for BBB disruption are discussed, summarizing diverse applications ranging from the treatment of neurodegenerative diseases to targeted drug delivery for brain tumors. The review also addresses safety considerations, outlining the current understanding of potential risks and mitigation strategies associated with ultrasound exposure, including real-time monitoring and assessment of treatment efficacy. Among the large number of studies, significant successes are highlighted thus providing perspective on the future direction of the field.
Assuntos
Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Barreira Hematoencefálica/efeitos da radiação , Humanos , Sistemas de Liberação de Medicamentos/métodos , Animais , Terapia por Ultrassom/métodosRESUMO
Glioblastoma is an aggressive brain cancer with a very poor prognosis in which less than 6% of patients survive more than five-year post-diagnosis. The outcome of this disease for many patients may be improved by early detection. This could provide clinicians with the information needed to take early action for treatment. In this work, we present the utilization of a non-invasive, fully volumetric ultrasonic imaging method to assess microvascular change during the evolution of glioblastoma in mice. Volumetric ultrasound localization microscopy (ULM) was used to observe statistically significant ( ) reduction in the appearance of functional vasculature over the course of three weeks. We also demonstrate evidence suggesting the reduction of vascular flow for vessels peripheral to the tumor. With an 82.5% consistency rate in acquiring high-quality vascular images, we demonstrate the possibility of volumetric ULM as a longitudinal method for microvascular characterization of neurological disease.
Assuntos
Glioblastoma , Camundongos , Humanos , Animais , Glioblastoma/diagnóstico por imagem , Microvasos/diagnóstico por imagem , Ultrassonografia/métodos , Encéfalo/irrigação sanguínea , Perfusão , MicrobolhasRESUMO
BACKGROUND AND PURPOSE: Many studies have explored the possibility of using cranial ultrasound for discerning intracranial pathologies like tumors, hemorrhagic stroke, or subdural hemorrhage in clinical scenarios where computer tomography may not be accessible or feasible. The visualization of intracranial anatomy on B-mode ultrasound is challenging due to the presence of the skull that limits insonation to a few segments on the temporal bone that are thin enough to allow transcranial transmission of sound. Several artifacts are produced by hyperechoic signals inherent in brain and skull anatomy when images are created using temporal windows. METHODS: While the literature has investigated the accuracy of diagnosis of intracranial pathology with ultrasound, we lack a reference source for images acquired on cranial topography on B-mode ultrasound to illustrate the appearance of normal and abnormal structures of the brain and skull. Two investigators underwent hands-on training in Cranial point-of-care ultrasound (c-POCUS) and acquired multiple images from each patient to obtain the most in-depth images of brain to investigate all visible anatomical structures and pathology within 24 hours of any CT/MRI imaging done. RESULTS: Most reproducible structures visible on c-POCUS included bony parts and parenchymal structures. Transcranial and abdominal presets were equivalent in elucidating anatomical structures. Brain pathology like parenchymal hemorrhage, cerebral edema, and hydrocephalus were also visualized. CONCLUSIONS: We present an illustrated anatomical atlas of cranial ultrasound B-mode images acquired in various pathologies in a critical care environment and compare our findings with published literature by performing a scoping review of literature on the subject.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adulto , Humanos , Encéfalo/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Ecoencefalografia , Osso TemporalRESUMO
Ultrasound molecular imaging (USMI) is a technique used to noninvasively estimate the distribution of molecular markers in vivo by imaging microbubble contrast agents (MCAs) that have been modified to target receptors of interest on the vascular endothelium. USMI is especially relevant for preclinical and clinical cancer research and has been used to predict tumor malignancy and response to treatment. In the last decade, methods that improve the resolution of contrast-enhanced ultrasound by an order of magnitude and allow researchers to noninvasively image individual capillaries have emerged. However, these approaches do not translate directly to molecular imaging. In this work, we demonstrate super-resolution visualization of biomarker expression in vivo using superharmonic ultrasound imaging (SpHI) with dual-frequency transducers, targeted contrast agents, and localization microscopy processing. We validate and optimize the proposed method in vitro using concurrent optical and ultrasound microscopy and a microvessel phantom. With the same technique, we perform a proof-of-concept experiment in vivo in a rat fibrosarcoma model and create maps of biomarker expression co-registered with images of microvasculature. From these images, we measure a resolution of 23 µm, a nearly fivefold improvement in resolution compared to previous diffraction-limited molecular imaging studies.
RESUMO
The majority of exchanges of oxygen and nutrients are performed around vessels smaller than 100 µm, allowing cells to thrive everywhere in the body. Pathologies such as cancer, diabetes and arteriosclerosis can profoundly alter the microvasculature. Unfortunately, medical imaging modalities only provide indirect observation at this scale. Inspired by optical microscopy, ultrasound localization microscopy has bypassed the classic compromise between penetration and resolution in ultrasonic imaging. By localization of individual injected microbubbles and tracking of their displacement with a subwavelength resolution, vascular and velocity maps can be produced at the scale of the micrometer. Super-resolution ultrasound has also been performed through signal fluctuations with the same type of contrast agents, or through switching on and off nano-sized phase-change contrast agents. These techniques are now being applied pre-clinically and clinically for imaging of the microvasculature of the brain, kidney, skin, tumors and lymph nodes.
Assuntos
Ultrassonografia/métodos , Animais , Vasos Sanguíneos/diagnóstico por imagem , Humanos , Microbolhas , Neoplasias/diagnóstico por imagemRESUMO
Angiogenesis has been known as a hallmark of solid tumor cancers for decades, yet ultrasound has been limited in its ability to detect the microvascular changes associated with malignancy. Here, we demonstrate the potential of 'ultrasound localization microscopy' applied volumetrically in combination with quantitative analysis of microvascular morphology, as an approach to overcome this limitation. This pilot study demonstrates our ability to image complex microvascular patterns associated with tumor angiogenesis in-vivo at a resolution of tens of microns - substantially better than the diffraction limit of traditional clinical ultrasound, yet using an 8 MHz clinical ultrasound probe. Furthermore, it is observed that data from healthy and tumor-bearing tissue exhibit significant differences in microvascular pattern and density. Results suggests that with continued development of these novel technologies, ultrasound has the potential to detect biomarkers of cancer based on the microvascular 'fingerprint' of malignant angiogenesis rather than through imaging of blood flow dynamics or the tumor mass itself.
Assuntos
Fibrossarcoma/patologia , Imageamento Tridimensional/métodos , Microscopia/métodos , Microvasos/patologia , Neovascularização Patológica , Ultrassonografia/métodos , Animais , Modelos Animais de Doenças , Feminino , Projetos Piloto , Ratos Endogâmicos F344RESUMO
PURPOSE: Therapeutic ultrasound has been used in the brain for thrombolysis and high intensity focused ultrasound (HIFU) therapy. A low-frequency clinical study of sonothrombolysis, called the transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia (TRUMBI), has revealed an increased incidence of hemorrhage, which may have been caused by cavitation. The goal of this study is to determine if there is a comparable risk of generating cavitation during HIFU brain therapy at different frequencies. METHODS: Two approaches are used to transmit acoustic energy through the skull to the brain: low-frequency ultrasound, with a wavelength that is larger than the skull thickness, and high frequency ultrasound, that is sensitive to aberrations and must use corrective techniques. At high frequency, the mechanical index (MI) is lower, which translates to a higher cavitation threshold. In addition to the nonfocused geometry of the 300 kHz sonothrombolysis treatment device, two types of focused therapeutic transducers were modeled: a low frequency 220 kHz transducer and a 1 MHz transducer that required aberration correction with a time-reversal approach, representing the lowest and highest frequencies currently used. The acoustic field was modeled with a finite difference fullwave acoustic code developed for large scale computations, that is, capable of simulating the entire brain volume. Various MI thresholds and device geometries were considered to determine the regions of the brain that have an increased probability of cavitation events. RESULTS: For an equivalent energy deposition rate, it is shown that at a low frequency there is a significant volume of the brain that is above the MI thresholds. At a high frequency, the volume is over 3 orders of magnitude smaller, and it is entirely confined to a compact focal spot. CONCLUSIONS: The significant frequency dependence of the volumes with an increased probability of cavitation can be attributed to two factors: First, the volume encompassed by the focal region depends on the cube of the frequency. Second, the heat deposition increases with frequency. In conclusion, according to these simulations, the acoustic environment during HIFU brain therapy at 1 MHz is not conducive to a high probability of cavitation in extended regions of the brain.
Assuntos
Encéfalo/fisiologia , Encéfalo/efeitos da radiação , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Modelos Biológicos , Animais , Simulação por Computador , Limiar Diferencial/efeitos da radiação , Relação Dose-Resposta à Radiação , Ondas de Choque de Alta Energia/uso terapêutico , Humanos , Pressão , Doses de RadiaçãoRESUMO
Optical tracking was utilized to investigate the acoustic radiation force impulse (ARFI)-induced response, generated by a 5-MHz piston transducer, in a translucent tissue-mimicking phantom. Suspended 10-microm microspheres were tracked axially and laterally at multiple locations throughout the field of view of an optical microscope with 0.5-microm displacement resolution, in both dimensions, and at frame rates of up to 36 kHz. Induced dynamics were successfully captured before, during, and after the ARFI excitation at depths of up to 4.8 mm from the phantom's proximal boundary. Results are presented for tracked axial and lateral displacements resulting from on-axis and off-axis (i.e., shear wave) acquisitions; these results are compared to matched finite element method modeling and independent ultrasonically based empirical results and yielded reasonable agreement in most cases. A shear wave reflection, generated by the proximal boundary, consistently produced an artifact in tracked displacement data later in time (i.e., after the initial ARFI-induced displacement peak). This tracking method provides high-frame-rate, two-dimensional tracking data and thus could prove useful in the investigation of complex ARFI-induced dynamics in controlled experimental settings.
Assuntos
Tecido Elástico/diagnóstico por imagem , Microscopia Acústica/instrumentação , Modelos Biológicos , Imagens de Fantasmas , Ultrassom , Artefatos , Elasticidade , Gelatina , Microesferas , TransdutoresRESUMO
Radiation force-based techniques have been developed by several groups for imaging the mechanical properties of tissue. Acoustic Radiation Force Impulse (ARFI) imaging is one such method that uses commercially available scanners to generate localized radiation forces in tissue. The response of the tissue to the radiation force is determined using conventional B-mode imaging pulses to track micron-scale displacements in tissue. Current research in ARFI imaging is focused on producing real-time images of tissue displacements and related mechanical properties. Obstacles to producing a real-time ARFI imaging modality include data acquisition, processing power, data transfer rates, heating of the transducer, and patient safety concerns. We propose a parallel receive beamforming technique to reduce transducer heating and patient acoustic exposure, and to facilitate data acquisition for real-time ARFI imaging. Custom beam sequencing was used with a commercially available scanner to track tissue displacements with parallel-receive beamforming in tissue-mimicking phantoms. Using simulations, the effects of material properties on parallel tracking are observed. Transducer and tissue heating for parallel tracking are compared to standard ARFI beam sequencing. The effects of tracking beam position and size of the tracked region are also discussed in relation to the size and temporal response of the region of applied force, and the impact on ARFI image contrast and signal-to-noise ratio are quantified.
Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Ultrassonografia/métodos , Simulação por Computador , Humanos , Movimento/fisiologia , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse MecânicoRESUMO
Constructing an ultrasonic imaging system capable of compensating for phase errors in real-time is a significant challenge in adaptive imaging. We present a versatile adaptive imaging system capable of updating arrival time profiles at frame rates of approximately 2 frames per second (fps) with 1-D arrays and up to 0.81 fps for 1.75-D arrays, depending on the desired near-field phase correction algorithm. A novel feature included in this system is the ability to update the aberration profile at multiple beam locations for 1-D arrays. The features of this real-time adaptive imaging system are illustrated in tissue-mimicking phantoms with physical near-field phase screens and evaluated in clinical breast tissue with a 1.75-D array. The contrast-to-noise ratio (CNR) of anechoic cysts was shown to improve dramatically in the tissue-mimicking phantoms. In breast tissue, the width of point-like targets showed significant improvement: a reduction of 26.2% on average. Brightness of these targets, however, marginally decreased by 3.9%. For larger structures such as cysts, little improvement in features and CNR were observed, which is likely a result of the system assuming an infinite isoplanatic patch size for the 1.75-D arrays. The necessary requirements for constructing a real-time adaptive imaging system are also discussed.
Assuntos
Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Ultrassonografia/instrumentação , Gravação em Vídeo/instrumentação , Sistemas Computacionais , Desenho de Equipamento , Análise de Falha de Equipamento , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia/métodos , Gravação em Vídeo/métodosRESUMO
Time-delay estimators, such as normalized cross correlation and phase-shift estimation, form the computational basis for elastography, blood flow measurements, and acoustic radiation force impulse (ARFI) imaging. This paper examines the performance of these algorithms for small displacements (less than half the ultrasound pulse wavelength). The effects of noise, bandwidth, stationary echoes, kernel size, downsampling, interpolation, and quadrature demodulation on the accuracy of the time delay estimates are measured in terms of bias and jitter. Particular attention is given to the accuracy and resolution of the displacement measurements and to the computational efficiency of the algorithms. In most cases, Loupas' two-dimensional (2-D) autocorrelator performs as well as the gold standard, normalized cross correlation. However, Loupas' algorithm's calculation time is significantly faster, and it is particularly suited to operate on the signal data format most commonly used in ultrasound scanners. These results are used to implement a real-time ARFI imaging system using a commercial ultrasound scanner and a computer cluster. Images processed with the algorithms are examined in an ex vivo liver ablation study.