Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 677: 108169, 2019 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-31697914

RESUMO

Pyruvate carboxylase (PC) is a biotin-containing enzyme that converts pyruvate to oxaloacetate. We have previously shown that PC is overexpressed in highly invasive cancer cell lines where it supports biosynthesis during rapid cell growth. Here, we show that miR-143-3p suppresses the expression of PC in MDA-MB-231 cells by targeting its conserved binding site in the 3'-untranslated region (UTR) of human PC mRNA. Incorporation of the PC 3'UTR into a luciferase reporter gene inhibited expression of luciferase by 50% while mutation of the miR-143-3p binding site abrogated this inhibitory effect in MDA-MB-231 cells but not in low aggressive MCF-7 cell line. Transfection of miR-143-3p mimic or overexpression of miR-143-3p using tetracycline-inducible system in MDA-MB-231 cells down-regulated expression of both endogenous PC mRNA and protein by 40% and 50% respectively, confirming the regulatory role of miR-143-3p in PC expression. Induction of miR-143-3p expression at low and high levels lowered proliferation, metabolic activity and migration of MDA-MB-231 cells, in a dose-dependent manner. Re-expression of PC in MDA-MB-231 cells which were induced to express miR-143-3p partially restored migration but not proliferation, indicating that miR-143-3p regulates proliferation and migration through multiple pathways.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Piruvato Carboxilase/metabolismo , Regiões 3' não Traduzidas , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Biologia Computacional , Regulação para Baixo , Humanos , Piruvato Carboxilase/genética , RNA Mensageiro/química , RNA Mensageiro/metabolismo
2.
Comput Struct Biotechnol J ; 14: 223-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27358718

RESUMO

Altered cellular metabolism is a fundamental adaptation of cancer during rapid proliferation as a result of growth factor overstimulation. We review different pathways involving metabolic alterations in cancers including aerobic glycolysis, pentose phosphate pathway, de novo fatty acid synthesis, and serine and glycine metabolism. Although oncoproteins, c-MYC, HIF1α and p53 are the major drivers of this metabolic reprogramming, post-transcriptional regulation by microRNAs (miR) also plays an important role in finely adjusting the requirement of the key metabolic enzymes underlying this metabolic reprogramming. We also combine the literature data on the miRNAs that potentially regulate 40 metabolic enzymes responsible for metabolic reprogramming in cancers, with additional miRs from computational prediction. Our analyses show that: (1) a metabolic enzyme is frequently regulated by multiple miRs, (2) confidence scores from prediction algorithms might be useful to help narrow down functional miR-mRNA interaction, which might be worth further experimental validation. By combining known and predicted interactions of oncogenic transcription factors (TFs) (c-MYC, HIF1α and p53), sterol regulatory element binding protein 1 (SREBP1), 40 metabolic enzymes, and regulatory miRs we have established one of the first reference maps for miRs and oncogenic TFs that regulate metabolic reprogramming in cancers. The combined network shows that glycolytic enzymes are linked to miRs via p53, c-MYC, HIF1α, whereas the genes in serine, glycine and one carbon metabolism are regulated via the c-MYC, as well as other regulatory organization that cannot be observed by investigating individual miRs, TFs, and target genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA