Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(3)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35159387

RESUMO

The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) has been extensively investigated as a cancer therapy mainly based on its regulation of membrane lipid composition and structure, activating various cell fate pathways. We discovered, additionally, that 2OHOA can uncouple oxidative phosphorylation, but this has never been demonstrated mechanistically. Here, we explored the effect of 2OHOA on mitochondria isolated by ultracentrifugation from U118MG glioblastoma cells. Mitochondria were analyzed by shotgun lipidomics, molecular dynamic simulations, spectrophotometric assays for determining respiratory complex activity, mass spectrometry for assessing beta oxidation and Seahorse technology for bioenergetic profiling. We showed that the main impact of 2OHOA on mitochondrial lipids is their hydroxylation, demonstrated by simulations to decrease co-enzyme Q diffusion in the liquid disordered membranes embedding respiratory complexes. This decreased co-enzyme Q diffusion can explain the inhibition of disjointly measured complexes I-III activity. However, it doesn't explain how 2OHOA increases complex IV and state 3 respiration in intact mitochondria. This increased respiration probably allows mitochondrial oxidative phosphorylation to maintain ATP production against the 2OHOA-mediated inhibition of glycolytic ATP production. This work correlates 2OHOA function with its modulation of mitochondrial lipid composition, reflecting both 2OHOA anticancer activity and adaptation to it by enhancement of state 3 respiration.


Assuntos
Antineoplásicos , Trifosfato de Adenosina , Antineoplásicos/farmacologia , Mitocôndrias/metabolismo , Ácidos Oleicos , Respiração
2.
Data Brief ; 19: 2119-2125, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30229089

RESUMO

Currently considerable research both in life and in environmental sciences is dedicated to chemosensors able to detect metals of biological interest such as zinc and iron or other toxic and carcinogenic, as cadmium, mercury, chromium, lead. Recently, a new chemosensor strategy of "single chemosensor for multiple metals" has emerged. For this scope, many fluorescent sensors for Cd(II) and Zn(II) have been designed and synthetized, as ligand systems or in polymeric matrices [1], [2], [3]. The data presented in this article include experimental data on the of a pyridyl/phenolic/benzothiazole functionalized colorimetric receptor (BPAP) and its selectively recognise Fe(III) and Fe(II) ions with visible, naked eye colour changes and fluorometric selectivity towards Zn2+ and Cd2+ ions in aqueous medium. This article is submitted as a companion paper to Caruso et al. (2018) [4].

3.
Biochim Biophys Acta Biomembr ; 1859(9 Pt B): 1517-1525, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28411172

RESUMO

Human sphingomyelin synthase 1 (hSMS1) is the last enzyme for sphingomyelin (SM) biosynthesis. It has been discovered that in different human tumor tissues the SM levels are lower compared to normal tissues and the activation of hSMS1, to restore the normal levels of SM, inhibits cell cycle proliferation of cancer cells. Since the importance of SM and other lipid metabolism genes in the malignant transformation, we decided to explore the hSMS1 mechanism of action. Enzymes capable to regulate the formation of lipids are therefore of paramount importance. Here we present a computational study on sphingomyelin synthases hSMS1. The full structure of the enzyme was obtained by means of homology and ab initio techniques. Further molecular dynamics and docking studies permitted to identify putative binding sites and to identify the key residues for binding. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.


Assuntos
Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Transferases (Outros Grupos de Fosfato Substituídos)/química , Sítios de Ligação , Humanos , Proteínas de Membrana/fisiologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/fisiologia , Transferases (Outros Grupos de Fosfato Substituídos)/fisiologia
4.
Biochim Biophys Acta ; 1838(6): 1628-37, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24412218

RESUMO

The complex dual mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent anti-tumor compound used in membrane lipid therapy (MLT), has yet to be fully elucidated. It has been demonstrated that 2OHOA increases the sphingomyelin (SM) cell content via SM synthase (SGMS) activation. Its presence in membranes provokes changes in the membrane lipid structure that induce the translocation of PKC to the membrane and the subsequent overexpression of CDK inhibitor proteins (e.g., p21(Cip1)). In addition, 2OHOA also induces the translocation of Ras to the cytoplasm, provoking the silencing of MAPK and its related pathways. These two differential modes of action are triggered by the interactions of 2OHOA with either lipids or proteins. To investigate the molecular basis of the different interactions of 2OHOA with membrane lipids and proteins, we synthesized the R and S enantiomers of this compound. A molecular dynamics study indicated that both enantiomers interact similarly with lipid bilayers, which was further confirmed by X-ray diffraction studies. By contrast, only the S enantiomer was able to activate SMS in human glioma U118 cells. Moreover, the anti-tumor efficacy of the S enantiomer was greater than that of the R enantiomer, as the former can act through both MLT mechanisms. The present study provides additional information on this novel therapeutic approach and on the magnitude of the therapeutic effects of type-1 and type-2 MLT approaches. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Assuntos
Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Ácidos Oleicos/farmacologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Membrana Celular/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Humanos , Bicamadas Lipídicas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Nus , Modelos Químicos , Simulação de Dinâmica Molecular , Ácidos Oleicos/química , Transdução de Sinais/efeitos dos fármacos , Estereoisomerismo , Células Tumorais Cultivadas , Difração de Raios X
5.
Biochim Biophys Acta ; 1838(6): 1509-17, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24463068

RESUMO

The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) is an antitumor drug that regulates membrane lipid composition and structure. An important effect of this drug is the restoration of sphingomyelin (SM) levels in cancer cell membranes, where the SM concentration is lower than in non-tumor cells. It is well known that free fatty acid concentration in cell membranes is lower than 5%, and that fatty acid excess is rapidly incorporated into phospholipids. In a recent work, we have considered the effect of free 2OHOA in model membranes in liquid ordered (Lo) and liquid disordered (Ld) phases, by using all-atom molecular dynamics. This study concerns membranes that are modified upon incorporation of 2OHOA into different phospholipids. 2OHOA-containing phospholipids have a permanent effect on lipid membranes, making a Ld membrane surface more compact and less hydrated, whereas the opposite effect is observed in Lo domains. Moreover, the hydroxyl group of fatty acid chains increases the propensity of Ld model membranes to form hexagonal or other non-lamellar structures. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Assuntos
Membrana Celular/química , Ácidos Graxos/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Ácidos Oleicos/química , Fosfolipídeos/química , Animais , Humanos , Microdomínios da Membrana
6.
Biochim Biophys Acta ; 1838(3): 1010-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24369115

RESUMO

C8, a short peptide characterized by three regularly spaced Trp residues, belongs to the membrane-proximal external functional domains of the feline immunodeficiency virus coat protein gp36. It elicits antiviral activity as a result of blocking cell entry and exhibits membranotropic and fusogenic activities. Membrane-proximal external functional domains of virus coat proteins are potential targets in the development of new anti-HIV drugs that overcome the limitations of the current anti-retroviral therapy. In the present work, we studied the conformation of C8 and its interaction with micellar surfaces using circular dichroism, nuclear magnetic resonance and fluorescence spectroscopy. The experimental data were integrated by molecular dynamics simulations in a micelle-water system. Our data provide insight into the environmental conditions related to the presence of the fusogenic peptide C8 on zwitterionic or negatively charged membranes. The membrane charge modulates the conformational features of C8. A zwitterionic membrane surface induces C8 to assume canonical secondary structures, with hydrophobic interactions between the Trp residues and the phospholipid chains of the micelles. A negatively charged membrane surface favors disordered C8 conformations and unspecific superficial interactions, resulting in membrane destabilization.


Assuntos
Antivirais/química , Membrana Celular/química , Microambiente Celular , Fragmentos de Peptídeos/química , Proteínas do Envelope Viral/química , Animais , Gatos , Dicroísmo Circular , Fluorescência , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Conformação Proteica , Marcadores de Spin
7.
PLoS One ; 8(8): e72052, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24015204

RESUMO

BACKGROUND: Nonsteroidal anti-inflammatory drugs (NSAIDs) are a family of COX1 and COX2 inhibitors used to reduce the synthesis of pro-inflammatory mediators. In addition, inflammation often leads to a harmful generation of nitric oxide. Efforts are being done in discovering safer NSAIDs molecules capable of inhibiting the synthesis of pro-inflammatory lipid mediators and nitric oxide to reduce the side effects associated with long term therapies. METHODOLOGY/PRINCIPAL FINDINGS: The analogue of arachidonic acid (AA), 2-hydroxy-arachidonic acid (2OAA), was designed to inhibit the activities of COX1 and COX2 and it was predicted to have similar binding energies as AA for the catalytic sites of COX1 and COX2. The interaction of AA and 2OAA with COX1 and COX2 was investigated calculating the free energy of binding and the Fukui function. Toxicity was determined in mouse microglial BV-2 cells. COX1 and COX2 (PGH2 production) activities were measured in vitro. COX1 and COX2 expression in human macrophage-like U937 cells were carried out by Western blot, immunocytochemistry and RT-PCR analysis. NO production (Griess method) and iNOS (Western blot) were determined in mouse microglial BV-2 cells. The comparative efficacy of 2OAA, ibuprofen and cortisone in lowering TNF-α serum levels was determined in C57BL6/J mice challenged with LPS. We show that the presence of the -OH group reduces the likelihood of 2OAA being subjected to H* abstraction in COX, without altering significantly the free energy of binding. The 2OAA inhibited COX1 and COX2 activities and the expression of COX2 in human U937 derived macrophages challenged with LPS. In addition, 2OAA inhibited iNOS expression and the production of NO in BV-2 microglial cells. Finally, oral administration of 2OAA decreased the plasma TNF-α levels in vivo. CONCLUSION/SIGNIFICANCE: These findings demonstrate the potential of 2OAA as a NSAID.


Assuntos
Ácidos Araquidônicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Animais , Ácidos Araquidônicos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/toxicidade , Avaliação Pré-Clínica de Medicamentos , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Proteólise/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue
8.
Curr Pharm Des ; 19(3): 309-46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22920902

RESUMO

According to the "membrane sensor" hypothesis, the membrane's physical properties and microdomain organization play an initiating role in the heat shock response. Clinical conditions such as cancer, diabetes and neurodegenerative diseases are all coupled with specific changes in the physical state and lipid composition of cellular membranes and characterized by altered heat shock protein levels in cells suggesting that these "membrane defects" can cause suboptimal hsp-gene expression. Such observations provide a new rationale for the introduction of novel, heat shock protein modulating drug candidates. Intercalating compounds can be used to alter membrane properties and by doing so normalize dysregulated expression of heat shock proteins, resulting in a beneficial therapeutic effect for reversing the pathological impact of disease. The membrane (and lipid) interacting hydroximic acid (HA) derivatives discussed in this review physiologically restore the heat shock protein stress response, creating a new class of "membrane-lipid therapy" pharmaceuticals. The diseases that HA derivatives potentially target are diverse and include, among others, insulin resistance and diabetes, neuropathy, atrial fibrillation, and amyotrophic lateral sclerosis. At a molecular level HA derivatives are broad spectrum, multi-target compounds as they fluidize yet stabilize membranes and remodel their lipid rafts while otherwise acting as PARP inhibitors. The HA derivatives have the potential to ameliorate disparate conditions, whether of acute or chronic nature. Many of these diseases presently are either untreatable or inadequately treated with currently available pharmaceuticals. Ultimately, the HA derivatives promise to play a major role in future pharmacotherapy.


Assuntos
Pleiotropia Genética/fisiologia , Proteínas de Choque Térmico/biossíntese , Resposta ao Choque Térmico/fisiologia , Homeostase/fisiologia , Oximas/metabolismo , Animais , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Oximas/química
9.
PLoS One ; 6(12): e28818, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174906

RESUMO

Aging and pathophysiological conditions are linked to membrane changes which modulate membrane-controlled molecular switches, causing dysregulated heat shock protein (HSP) expression. HSP co-inducer hydroxylamines such as BGP-15 provide advanced therapeutic candidates for many diseases since they preferentially affect stressed cells and are unlikely have major side effects. In the present study in vitro molecular dynamic simulation, experiments with lipid monolayers and in vivo ultrasensitive fluorescence microscopy showed that BGP-15 alters the organization of cholesterol-rich membrane domains. Imaging of nanoscopic long-lived platforms using the raft marker glycosylphosphatidylinositol-anchored monomeric green fluorescent protein diffusing in the live Chinese hamster ovary (CHO) cell plasma membrane demonstrated that BGP-15 prevents the transient structural disintegration of rafts induced by fever-type heat stress. Moreover, BGP-15 was able to remodel cholesterol-enriched lipid platforms reminiscent of those observed earlier following non-lethal heat priming or membrane stress, and were shown to be obligate for the generation and transmission of stress signals. BGP-15 activation of HSP expression in B16-F10 mouse melanoma cells involves the Rac1 signaling cascade in accordance with the previous observation that cholesterol affects the targeting of Rac1 to membranes. Finally, in a human embryonic kidney cell line we demonstrate that BGP-15 is able to inhibit the rapid heat shock factor 1 (HSF1) acetylation monitored during the early phase of heat stress, thereby promoting a prolonged duration of HSF1 binding to heat shock elements. Taken together, our results indicate that BGP-15 has the potential to become a new class of pharmaceuticals for use in 'membrane-lipid therapy' to combat many various protein-misfolding diseases associated with aging.


Assuntos
Proteínas de Choque Térmico/metabolismo , Lipídeos de Membrana/uso terapêutico , Microdomínios da Membrana/metabolismo , Oximas/farmacologia , Piperidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Células CHO , Colesterol/metabolismo , Cricetinae , Cricetulus , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Melanoma/patologia , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Simulação de Dinâmica Molecular , Nanoestruturas/química , Temperatura , beta-Ciclodextrinas/farmacologia , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
Molecules ; 13(4): 749-61, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18463576

RESUMO

We report the synthesis, antioxidant and antiproliferative activity and a QSAR analysis of synthetic diphenylpropionamide derivatives. Synthesis of these compounds was achieved by direct condensation of 2,2- and 3,3-diphenylpropionic acid and appropriate amines using 1-propylphoshonic acid cyclic anhydride (PPAA) as catalyst. Compound structures were elucidated by NMR analysis and their melting points were measured. The in vitro antioxidant activity of these compounds was tested by evaluating the amount of scavenged ABTS radical and estimating ROS and NO production in LPS stimulated J774.A1 macrophages. All compounds were tested for their effect on viability of cells and results demonstrated that they are not toxic towards the cell lines used. The cytotoxic activity of all compounds was evaluated by a Brine Shrimp Test.


Assuntos
Amidas/síntese química , Amidas/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Biologia Computacional/métodos , Propionatos/farmacologia , Amidas/química , Animais , Antioxidantes/química , Proliferação de Células/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/metabolismo , Propionatos/síntese química , Propionatos/química , Espécies Reativas de Oxigênio/metabolismo
11.
Prog Lipid Res ; 44(5): 303-44, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16214218

RESUMO

In the last decade or so, it has been realised that membranes do not just have a lipid-bilayer structure in which proteins are embedded or with which they associate. Structures are dynamic and contain areas of heterogeneity which are vital for their formation. In this review, we discuss some of the ways in which these dynamic and heterogeneous structures have implications during stress and in relation to certain human diseases. A particular stress is that of temperature which may instigate adaptation in poikilotherms or appropriate defensive responses during fever in mammals. Recent data emphasise the role of membranes in sensing temperature changes and in controlling a regulatory loop with chaperone proteins. This loop seems to need the existence of specific membrane microdomains and also includes association of chaperone (heat stress) proteins with the membrane. The role of microdomains is then discussed further in relation to various human pathologies such as cardiovascular disease, cancer and neurodegenerative diseases. The concept of modifying membrane lipids (lipid therapy) as a means for treating such pathologies is then introduced. Examples are given when such methods have been shown to have benefit. In order to study membrane microheterogeneity in detail and to elucidate possible molecular mechanisms that account for alteration in membrane function, new methods are needed. In the second part of the review, we discuss ultra-sensitive and ultra-resolution imaging techniques. These include atomic force microscopy, single particle tracking, single particle tracing and various modern fluorescence methods. Finally, we deal with computing simulation of membrane systems. Such methods include coarse-grain techniques and Monte Carlo which offer further advances into molecular dynamics. As computational methods advance they will have more application by revealing the very subtle interactions that take place between the lipid and protein components of membranes - and which are so essential to their function.


Assuntos
Membrana Celular/metabolismo , Temperatura Alta/efeitos adversos , Lipídeos/análise , Mamíferos/metabolismo , Transdução de Sinais/fisiologia , Animais , Membrana Celular/química , Simulação por Computador , Microdomínios da Membrana/metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA