Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Shock ; 60(1): 64-74, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37079467

RESUMO

ABSTRACT: Introduction: Despite therapeutic advances in hemorrhagic shock, mortality from multiple organ failure remains high. We previously showed that the α1 subunit of AMP-activated protein kinase (AMPK), a crucial regulator of mitochondrial function, exerts a protective role in hemorrhagic shock. Humanin is a mitochondrial peptide with cytoprotective properties against cellular stress. Here, we investigated whether AMPKα1 influences systemic levels of endogenous humanin in hemorrhagic shock and whether treatment with the synthetic analog humanin-G affords beneficial effects. Methods: AMPKα1 wild-type (WT) and knockout (KO) female mice were subjected to hemorrhagic shock followed by resuscitation with blood and lactated Ringer's solution. In short-term studies, mice were treated with humanin-G or vehicle and sacrificed at 3 h after resuscitation; in survival studies, mice were treated with PEGylated humanin-G and monitored for 7 days. Results: Compared with the vehicle WT group, KO mice exhibited severe hypotension, cardiac mitochondrial damage, and higher plasma levels of Th17 cytokines but had similar lung injury and similar plasma elevation of endogenous humanin. Treatment with humanin-G improved lung injury, mean arterial blood pressure, and survival in both WT and KO mice, without affecting systemic cytokine or humanin levels. Humanin-G also ameliorated cardiac mitochondrial damage and increased adenosine triphosphate levels in KO mice. Beneficial effects of humanin-G were associated with lung cytoplasmic and nuclear activation of the signal transducer and activator of transcription-3 (STAT3) in AMPKα1-independent manner with marginal or no effects on mitochondrial STAT3 and complex I subunit GRIM-19. Conclusions: Our data indicate that circulating levels of humanin increase during hemorrhagic shock in AMPKα1-independent fashion as a defense mechanism to counteract metabolic derangement and that administration of humanin-G affords beneficial effects through STAT3 activation even in the absence of a functional AMPKα1.


Assuntos
Lesão Pulmonar , Choque Hemorrágico , Feminino , Humanos , Choque Hemorrágico/metabolismo , Lesão Pulmonar/complicações , Proteínas Quinases Ativadas por AMP/metabolismo , Pulmão/metabolismo , Citocinas , Ressuscitação
2.
Shock ; 59(5): 779-790, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840516

RESUMO

ABSTRACT: Introduction: Sepsis is a dysregulated host response to infection that can lead to life-threatening organ dysfunction. Clinical and animal studies consistently demonstrate that female subjects are less susceptible to the adverse effects of sepsis, demonstrating the importance of understanding how sex influences sepsis outcomes. The signal transducer and activator of transcription 3 (STAT3) pathway are a major signaling pathway that facilitates inflammation during sepsis. STAT3 is abundantly expressed in white adipose tissue; however, little is known about the contribution of white adipose tissue STAT3 activation during sepsis. We hypothesize that adipocyte STAT3 inhibition during severe sepsis will exaggerate the inflammatory response and impact organ injury, in a sex-dependent manner. Methods: We generated STAT3 flox/flox (wild-type [WT]) and adipocyte STAT3 knock out (A-STAT3 KO) mice using Cre-lox technology. Studies were done in 12- to 16-week-old male and female mice. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP). Control nonseptic mice did not undergo CLP (0 h CLP). Tissues were harvested 18 h after CLP. Body composition was determined by echo magnetic resonance imaging. Energy metabolism was determined by indirect calorimetry. White adipose tissue morphology was determined by hematoxylin and eosin staining, while STAT3 activation in the white adipose tissue was determined by western blot analysis and immunohistochemistry staining of STAT3 activation/phosphorylation at tyrosine 705. Plasma cytokines (TNF-α, IL-6, and leptin) were determined by luminex assay. Neutrophil infiltration of the lung and liver was assessed by myeloperoxidase activity assay. Histological signs of organ injury on lung and liver tissue were assessed by hematoxylin and eosin staining. Liver injury was further assessed by measuring plasma alanine and aspartate aminotransferase. In a separate cohort of mice, sepsis was induced by CLP and mice were monitored every 6-12 h over a 7-day period to assess survival rate. Results: We demonstrate that neither body composition nor energy metabolism is altered with adipocyte STAT3 inhibition in male or female mice, under nonseptic conditions. Sepsis was associated with reduced adipocyte size in female WT and A-STAT3 KO mice, suggesting that this event is STAT3 independent. Sepsis did not alter adipocyte size in male WT and A-STAT3 KO mice, suggesting that this event is also sex dependent. Although STAT3 phosphorylation at tyrosine 705 expression is negligible in male and female A-STAT3 KO mice, septic female WT and A-STAT3 KO mice have higher white adipose tissue STAT3 activation than male WT and A-STAT3 KO mice. Adipocyte STAT3 inhibition did not alter the proinflammatory cytokine response during sepsis in male or female mice, as measured by plasma TNF-α, IL-6, and leptin levels. Adipocyte STAT3 inhibition reduced lung neutrophil infiltration and histological signs of lung injury during sepsis in male mice. On the contrary, adipocyte STAT3 inhibition had no effect on lung neutrophil infiltration or lung injury in female mice. We further demonstrate that neither liver neutrophil infiltration nor histological signs of liver injury are altered by adipocyte STAT3 inhibition during sepsis, in male or female mice. Lastly, adipocyte STAT3 inhibition did not affect survival rate of male or female mice during sepsis. Conclusions: Our study demonstrates that sex influences white adipose tissue STAT3 activation and morphology during sepsis, which is not dependent on the presence of functional STAT3 in mature adipocytes. Furthermore, genetic inhibition of adipocyte STAT3 activation in male, but not female mice, results in reduced lung neutrophil infiltration and lung injury during sepsis. The results from our study demonstrate the importance of considering biological sex and the white adipose tissue as potential sources and targets of inflammation during sepsis.


Assuntos
Lesão Pulmonar , Sepse , Masculino , Camundongos , Animais , Leptina , Lesão Pulmonar/complicações , Fator de Necrose Tumoral alfa , Interleucina-6 , Fator de Transcrição STAT3/genética , Amarelo de Eosina-(YS) , Hematoxilina , Sepse/patologia , Citocinas , Inflamação , Adipócitos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Physiol Rep ; 10(18): e15453, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36117416

RESUMO

Acute kidney injury (AKI) is associated with morbidity and mortality. Urinary biomarkers may disentangle its clinical heterogeneity. Olfactomedin 4 (OLFM4) is a secreted glycoprotein expressed in stressed neutrophils and epithelial cells. In septic mice, OLFM4 expression localized to the kidney's loop of Henle (LOH) and was detectable in the urine. We hypothesized that urine OLFM4 (uOLFM4) will be increased in patients with AKI and sepsis. Urine from critically ill pediatric patients was obtained from a prospective study based on AKI and sepsis status. uOLFM4 was quantified with a Luminex immunoassay. AKI was defined by KDIGO severe criteria. Sepsis status was extracted from the medical record based on admission diagnosis. Immunofluorescence on pediatric kidney biopsies was performed with NKCC2, uromodulin and OLFM4 specific antibodies. Eight patients had no sepsis, no AKI; 7 had no sepsis but did have AKI; 10 had sepsis, no AKI; 11 had sepsis and AKI. Patients with AKI had increased uOLFM4 compared to no/stage 1 AKI (p = 0.044). Those with sepsis had increased uOLFM4 compared to no sepsis (p = 0.026). uOLFM4 and NGAL were correlated (r2 0.59, 95% CI 0.304-0.773, p = 0.002), but some patients had high uOLFM4 and low NGAL, and vice versa. Immunofluorescence on kidney biopsies demonstrated OLFM4 colocalization with NKCC2 and uromodulin, suggesting expression in the thick ascending LOH (TALH). We conclude that AKI and sepsis are associated with increased uOLFM4. uOLFM4 and NGAL correlated in many patients, but was poor in others, suggesting these markers may differentiate AKI subgroups. Given OLFM4 colocalization to human TALH, we propose OLFM4 may be a LOH-specific AKI biomarker.


Assuntos
Injúria Renal Aguda , Sepse , Injúria Renal Aguda/complicações , Injúria Renal Aguda/diagnóstico , Animais , Biomarcadores , Criança , Proteínas da Matriz Extracelular , Glicoproteínas , Humanos , Lipocalina-2 , Alça do Néfron , Camundongos , Estudos Prospectivos , Sepse/complicações , Sepse/diagnóstico , Uromodulina
4.
Front Immunol ; 13: 984298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119052

RESUMO

Endothelial dysfunction plays a central role in the pathogenesis of sepsis-mediated multiple organ failure. Several clinical and experimental studies have suggested that the glycocalyx is an early target of endothelial injury during an infection. Colivelin, a synthetic derivative of the mitochondrial peptide humanin, has displayed cytoprotective effects in oxidative conditions. In the current study, we aimed to determine the potential therapeutic effects of colivelin in endothelial dysfunction and outcomes of sepsis in vivo. Male C57BL/6 mice were subjected to a clinically relevant model of polymicrobial sepsis by cecal ligation and puncture (CLP) and were treated with vehicle or colivelin (100-200 µg/kg) intraperitoneally at 1 h after CLP. We observed that vehicle-treated mice had early elevation of plasma levels of the adhesion molecules ICAM-1 and P-selectin, the angiogenetic factor endoglin and the glycocalyx syndecan-1 at 6 h after CLP when compared to control mice, while levels of angiopoietin-2, a mediator of microvascular disintegration, and the proprotein convertase subtilisin/kexin type 9, an enzyme implicated in clearance of endotoxins, raised at 18 h after CLP. The early elevation of these endothelial and glycocalyx damage biomarkers coincided with lung histological injury and neutrophil inflammation in lung, liver, and kidneys. At transmission electron microscopy analysis, thoracic aortas of septic mice showed increased glycocalyx breakdown and shedding, and damaged mitochondria in endothelial and smooth muscle cells. Treatment with colivelin ameliorated lung architecture, reduced organ neutrophil infiltration, and attenuated plasma levels of syndecan-1, tumor necrosis factor-α, macrophage inflammatory protein-1α and interleukin-10. These therapeutic effects of colivelin were associated with amelioration of glycocalyx density and mitochondrial structure in the aorta. At molecular analysis, colivelin treatment was associated with inhibition of the signal transducer and activator of transcription 3 and activation of the AMP-activated protein kinase in the aorta and lung. In long-term outcomes studies up to 7 days, co-treatment of colivelin with antimicrobial agents significantly reduced the disease severity score when compared to treatment with antibiotics alone. In conclusion, our data support that damage of the glycocalyx is an early pathogenetic event during sepsis and that colivelin may have therapeutic potential for the treatment of sepsis-associated endothelial dysfunction.


Assuntos
Glicocálix , Sepse , Proteínas Quinases Ativadas por AMP/metabolismo , Angiopoietina-2/metabolismo , Angiopoietina-2/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Endoglina/metabolismo , Endotélio Vascular/metabolismo , Endotoxinas/metabolismo , Glicocálix/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-10/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Inflamatórias de Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Selectina-P/metabolismo , Pró-Proteína Convertases/metabolismo , Fator de Transcrição STAT3/metabolismo , Sepse/metabolismo , Subtilisinas/metabolismo , Subtilisinas/uso terapêutico , Sindecana-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576076

RESUMO

Mesenteric ischemia and reperfusion (I/R) injury can ensue from a variety of vascular diseases and represents a major cause of morbidity and mortality in intensive care units. It causes an inflammatory response associated with local gut dysfunction and remote organ injury. Adenosine monophosphate-activated protein kinase (AMPK) is a crucial regulator of metabolic homeostasis. The catalytic α1 subunit is highly expressed in the intestine and vascular system. In loss-of-function studies, we investigated the biological role of AMPKα1 in affecting the gastrointestinal barrier function. Male knock-out (KO) mice with a systemic deficiency of AMPKα1 and wild-type (WT) mice were subjected to a 30 min occlusion of the superior mesenteric artery. Four hours after reperfusion, AMPKα1 KO mice exhibited exaggerated histological gut injury and impairment of intestinal permeability associated with marked tissue lipid peroxidation and a lower apical expression of the junction proteins occludin and E-cadherin when compared to WT mice. Lung injury with neutrophil sequestration was higher in AMPKα1 KO mice than WT mice and paralleled with higher plasma levels of syndecan-1, a biomarker of endothelial injury. Thus, the data demonstrate that AMPKα1 is an important requisite for epithelial and endothelial integrity and has a protective role in remote organ injury after acute ischemic events.


Assuntos
Proteínas Quinases Ativadas por AMP/deficiência , Lesão Pulmonar Aguda/complicações , Intestinos/enzimologia , Intestinos/lesões , Isquemia Mesentérica/complicações , Traumatismo por Reperfusão/complicações , Proteínas Quinases Ativadas por AMP/genética , Lesão Pulmonar Aguda/enzimologia , Animais , Caderinas/metabolismo , Permeabilidade da Membrana Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Epiteliais/metabolismo , Glicocálix/metabolismo , Intestinos/patologia , Isquemia Mesentérica/enzimologia , Camundongos Endogâmicos C57BL , Ocludina/metabolismo , Traumatismo por Reperfusão/enzimologia
6.
Front Immunol ; 11: 210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117320

RESUMO

Alterations in the energy homeostasis contribute to sepsis-mediated multiple organ failure. The liver plays a central role in metabolism and participates to the innate immune and inflammatory responses of sepsis. Several clinical and experimental studies have suggested that females are less susceptible to the adverse outcome of sepsis. However, underlying mechanisms of organ damage in sepsis remain largely undefined. AMP-activated protein kinase (AMPK) is an important regulator of mitochondrial quality control. The AMPK catalytic α1 isoform is abundantly expressed in the liver. Here, we determined the role of hepatocyte AMPKα1 in sepsis by using hepatocyte-specific AMPKα1 knockout mice (H-AMPKα1 KO) generated with Cre-recombinase expression under the control of the albumin promoter. Using a clinically relevant model of polymicrobial sepsis by cecal ligation and puncture (CLP), we observed that male H-AMPKα1 KO mice had higher plasma levels of tumor necrosis factor-α and interleukin-6 and exhibited a more severe liver and lung injury than male H-AMPKα1 WT mice, as evaluated by histology and neutrophil infiltration at 18 h after CLP. Plasma levels of interleukin-10 and the keratinocyte-derived chemokine were similarly elevated in both KO and WT male mice. At transmission electron microscopy analysis, male H-AMPKα1 KO mice exhibited higher liver mitochondrial damage, which was associated with a significant decrease in liver ATP levels when compared to WT mice at 18 h after sepsis. Mortality rate was significantly higher in the male H-AMPKα1 KO group (91%) when compared to WT mice (60%) at 7 days after CLP. Female H-AMPKα1 WT mice exhibited a similar degree of histological liver and lung injury, but significantly milder liver mitochondrial damage and higher autophagy when compared to male WT mice after CLP. Interestingly, H-AMPKα1 KO female mice had lower organ neutrophil infiltration, lower liver mitochondrial damage and lower levels of cytokines than WT female mice. There was no significant difference in survival rate between WT and KO mice in the female group. In conclusion, our study demonstrates that AMPKα1 is a crucial hepatoprotective enzyme during sepsis. Furthermore, our results suggest that AMPK-dependent liver metabolic functions may influence the susceptibility to multiple organ injury in a sex-dependent manner.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Técnicas de Inativação de Genes/métodos , Hepatócitos/metabolismo , Sepse/imunologia , Sepse/mortalidade , Animais , Autofagia/genética , Modelos Animais de Doenças , Feminino , Interleucina-6/sangue , Fígado/lesões , Lesão Pulmonar/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/patologia , Infiltração de Neutrófilos/genética , Sepse/sangue , Fatores Sexuais , Taxa de Sobrevida , Fator de Necrose Tumoral alfa/sangue
7.
Am J Respir Cell Mol Biol ; 56(5): 585-596, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28085510

RESUMO

The development of multiple organ failure in patients with hemorrhagic shock is significantly influenced by patient age. Adenosine monophosphate-activated protein kinase (AMPK) is a crucial regulator of energy homeostasis, which coordinates metabolic repair during cellular stress. We investigated whether AMPK-regulated signaling pathways are age-dependent in hemorrhage-induced lung injury and whether AMPK activation by 5-amino-4-imidazole carboxamide riboside (AICAR) affords lung protective effects. Male C57/BL6 young mice (3-5 mo), mature adult mice (9-12 mo), and young AMPKα1 knockout mice (3-5 mo) were subjected to hemorrhagic shock by blood withdrawing, followed by resuscitation with shed blood and lactated Ringer's solution. Plasma proinflammatory cytokines were similarly elevated in C57/BL6 young and mature adult mice after hemorrhagic shock. However, mature adult mice exhibited more severe lung edema and neutrophil infiltration, and higher mitochondrial damage in alveolar epithelial type II cells, than did young mice. No change in autophagy was observed. At molecular analysis, the phosphorylation of the catalytic subunit AMPKα1 was associated with nuclear translocation of peroxisome proliferator-activated receptor γ co-activator-α in young, but not mature, adult mice. Treatment with AICAR ameliorated the disruption of lung architecture in mice of both ages; however, effects in mature adult mice were different than young mice and also involved inhibition of nuclear factor-κB. In young AMPKα1 knockout mice, AICAR failed to improve hypotension and lung neutrophil infiltration. Our data demonstrate that during hemorrhagic shock, AMPK-dependent metabolic repair mechanisms are important for mitigating lung injury. However, these mechanisms are less competent with age.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Redes e Vias Metabólicas , Choque Hemorrágico/enzimologia , Choque Hemorrágico/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/ultraestrutura , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Autofagia/efeitos dos fármacos , Western Blotting , Líquido da Lavagem Broncoalveolar , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Hipotensão/sangue , Hipotensão/complicações , Hipotensão/enzimologia , Hipotensão/patologia , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Edema Pulmonar/complicações , Edema Pulmonar/enzimologia , Edema Pulmonar/patologia , Ribonucleotídeos/farmacologia , Choque Hemorrágico/sangue , Choque Hemorrágico/complicações , Sirtuína 1/metabolismo
8.
Innate Immun ; 21(6): 609-18, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25956304

RESUMO

The severity of sepsis is significantly affected by advanced age; however, age-dependent molecular mechanisms of this susceptibility are unknown. Nuclear liver X receptor-α (LXRα) is a regulator of lipid metabolism with associated anti-inflammatory properties. Here, we investigated the role of LXRα in age-dependent lung injury and outcome of sepsis. Male C57BL/6, LXRα-deficient (LXRα(-/-)) and wild type (WT) (LXRα(+/+)) mice of different ages were subjected to sepsis by cecal ligation and puncture (CLP). In pharmacological studies, treatment with the LXRα ligand T0901317 reduced lung neutrophil infiltration in C57BL/6 mice aged from 1 to 8 mo when compared with vehicle-treated animals subjected to CLP. The LXRα ligand improved survival in young mice (2-3 mo old) but did not affect survival or neutrophil infiltration in mature adult mice (11-13 mo old). Immunoblotting revealed an age-dependent decrease of lung LXRα levels. Young LXRα(-/-) mice (2-3 mo old) exhibited earlier mortality than age-matched WT mice after CLP. Lung damage and neutrophil infiltration, lung activation of the pro-inflammatory NF-κB and plasma IL-6 levels were higher in LXRα(-/-) mice 18 h after CLP compared with LXRα(+/+) mice. This study suggests that the anti-inflammatory properties of LXRα in sepsis are age-dependent and severely compromised in mature adult animals.


Assuntos
Fatores Etários , Neutrófilos/fisiologia , Receptores Nucleares Órfãos/metabolismo , Sepse/imunologia , Animais , Ceco/cirurgia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Hidrocarbonetos Fluorados/administração & dosagem , Interleucina-6/sangue , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/genética , Sulfonamidas/administração & dosagem
9.
Am J Physiol Lung Cell Mol Physiol ; 300(5): L730-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21398498

RESUMO

C-peptide is a 31-amino acid peptide cleaved from proinsulin during insulin synthesis. Initially thought to be inert, C-peptide may modulate the inflammatory response in the setting of endotoxemia and ischemia reperfusion. However, the spectrum of its biological effects is unclear. We hypothesized that exogenous administration of C-peptide would modulate pro- and anti-inflammatory signaling pathways and thereby attenuate lung inflammation in an in vivo model of hemorrhagic shock. Hemorrhagic shock was induced in male Wistar rats (aged 3-4 mo) by withdrawing blood to a mean arterial pressure of 50 mmHg. At 3 h after hemorrhage, rats were rapidly resuscitated by returning their shed blood. At the time of resuscitation and every hour thereafter, animals received C-peptide (280 nmol/kg) or vehicle parenterally. Animals were euthanized at 1 and 3 h after resuscitation. C-peptide administration at resuscitation following hemorrhagic shock ameliorated hypotension and blunted the systemic inflammatory response by reducing plasma levels of IL-1, IL-6, macrophage inflammatory protein-1α, and cytokine-induced neutrophil chemoattractant-1. This was associated with a reduction in lung neutrophil infiltration and plasma levels of receptor for advanced glycation end products. Mechanistically, C-peptide treatment was associated with reduced expression of proinflammatory transcription factors activator protein-1 and NF-κB and activation of the anti-inflammatory transcription factor peroxisome proliferator-activated receptor-γ. Our data suggest that C-peptide ameliorates the inflammatory response and lung inflammation following hemorrhagic shock. These effects may be modulated by altering the balance between pro- and anti-inflammatory signaling in the lung.


Assuntos
Peptídeo C/farmacologia , Pneumonia/prevenção & controle , Choque Hemorrágico/complicações , Animais , Citocinas/sangue , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , PPAR gama/metabolismo , Pneumonia/patologia , Ratos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/sangue , Ressuscitação , Choque Hemorrágico/tratamento farmacológico , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/sangue
10.
Shock ; 35(4): 367-74, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20926989

RESUMO

Liver X receptor α (LXRα) is a nuclear transcription factor that regulates lipid metabolism. Recently, it has been shown that activation of LXRα with synthetic ligands has anti-inflammatory effects in atherosclerosis and chemical-induced dermatitis. We investigated the effect of the LXRα agonist, T0901317, on lung inflammation in a rodent model of hemorrhagic shock. Hemorrhagic shock was induced in male rats by withdrawing blood to a goal mean arterial blood pressure of 50 mmHg. Blood pressure was maintained at this level for 3 h, at which point rats were rapidly resuscitated with shed blood. Animals were then treated with T0901317 (50 mg · kg) or vehicle i.p. and sacrificed at 1, 2, and 3 h after resuscitation. Treatment with T0901317 significantly improved the cardiac and stroke volume indices as well as the heart rate of rats during the resuscitation period as compared with vehicle-treated rats. The T0901317-treated animals showed significant improvement in the plasma level of lactate, whereas base deficit and bicarbonate levels both trended toward improvement. The T0901317-treated animals also showed lower levels of plasma cytokines and chemokines monocyte chemoattractant protein 1, macrophage inflammatory protein 1α, TNF-α, KC, and IL-6. Lung injury and neutrophil infiltration were reduced by treatment with T0901317, as evaluated by histology and myeloperoxidase assay. At molecular analysis, treatment with T0901317 increased nuclear LXRα expression and DNA binding while also inhibiting activation of nuclear factor κB, a proinflammatory transcription factor, in the lung. Thus, our data suggest that LXRα is an important modulator of the inflammatory response and lung injury after severe hemorrhagic shock, likely through the inhibition of the nuclear factor κB pathway.


Assuntos
Hidrocarbonetos Fluorados/uso terapêutico , NF-kappa B/metabolismo , Receptores Nucleares Órfãos/metabolismo , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Sulfonamidas/uso terapêutico , Animais , Bicarbonatos/sangue , Quimiocina CCL2/sangue , Quimiocina CCL3/sangue , Colesterol/sangue , Modelos Animais de Doenças , Interleucina-10/sangue , Interleucina-6/sangue , Ácido Láctico/sangue , Receptores X do Fígado , Masculino , Ratos , Ratos Wistar , Choque Hemorrágico/sangue , Choque Hemorrágico/imunologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue
11.
Am J Pathol ; 177(4): 1834-47, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20709805

RESUMO

The nuclear peroxisome proliferator-activated receptor δ (PPARδ) is an important regulator of lipid metabolism. In contrast to its known effects on energy homeostasis, its biological role on inflammation is not well understood. We investigated the role of PPARδ in the modulation of the nuclear factor-κB (NF-κB)-driven inflammatory response to polymicrobial sepsis in vivo and in macrophages in vitro. We demonstrated that administration of GW0742, a specific PPARδ ligand, provided beneficial effects to rats subjected to cecal ligation and puncture, as shown by reduced systemic release of pro-inflammatory cytokines and neutrophil infiltration in lung, liver, and cecum, when compared with vehicle treatment. Molecular analysis revealed that treatment with GW0742 reduced NF-κB binding to DNA in lung and liver. In parallel experiments, heterozygous PPARδ-deficient mice suffered exaggerated lethality when subjected to cecal ligation and puncture and exhibited severe lung injury and higher levels of circulating tumor necrosis factor-α (TNFα) and keratinocyte-derived chemokine than wild-type mice. Furthermore, in lipopolysaccharide-stimulated J774.A1 macrophages, GW0742 reduced TNFα production by inhibiting NF-κB activation. RNA silencing of PPARδ abrogated the inhibitory effects of GW0742 on TNFα production. Chromatin immunoprecipitation assays revealed that PPARδ displaced the NF-κB p65 subunit from the κB elements of the TNFα promoter, while recruiting the co-repressor BCL6. These data suggest that PPARδ is a crucial anti-inflammatory regulator, providing a basis for novel sepsis therapies.


Assuntos
Bacteriemia/prevenção & controle , Inflamação/prevenção & controle , NF-kappa B/metabolismo , PPAR delta/fisiologia , Sepse/metabolismo , Sepse/microbiologia , Animais , Bacteriemia/etiologia , Bacteriemia/metabolismo , Western Blotting , Ceco/imunologia , Ceco/metabolismo , Ceco/microbiologia , Núcleo Celular/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Hipotensão , Técnicas Imunoenzimáticas , Inflamação/etiologia , Inflamação/metabolismo , Luciferases/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , PPAR delta/agonistas , PPAR delta/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Sepse/imunologia , Transdução de Sinais , Taxa de Sobrevida , Tiazóis/farmacologia
12.
Am J Physiol Gastrointest Liver Physiol ; 298(1): G133-41, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19926821

RESUMO

A clinical observation in pediatric and adult intensive care units is that the incidence of multiple organ failure in pediatric trauma victims is lower than in adult patients. However, the molecular mechanisms are not yet defined. Recent experimental studies have shown that the nuclear peroxisome proliferator-activated receptor-gamma (PPARgamma) modulates the inflammatory process. In this study, we hypothesized that severity of liver injury may be age dependent and PPARgamma activation may provide beneficial effects. Hemorrhagic shock was induced in anesthetized young (3-5 mo old) and mature male Wistar rats (11-13 mo old) by withdrawing blood to a mean arterial blood pressure of 50 mmHg. After 3 h, rats were rapidly resuscitated with shed blood. Animals were euthanized 3 h after resuscitation. In mature rats, liver injury appeared more pronounced compared with young rats and was characterized by marked hepatocyte apoptosis, extravasation of erythrocytes, and accumulation of neutrophils. The ratio between the antiapoptotic protein Bcl-2 and the proapoptotic protein BAX was lower, whereas activity of caspase-3, the executioner of apoptosis, was higher in liver of mature rats compared with young rats. Plasma alanine aminotransferase levels were not different between the two age groups. This heightened liver apoptosis was associated with a significant downregulation of PPARgamma DNA binding in mature rats compared with young rats. Treatment with the PPARgamma ligand ciglitazone significantly reduced liver apoptosis in mature rats. Our data suggest that liver injury after severe hemorrhage is age dependent and PPARgamma activation is a novel hepatoprotective mechanism.


Assuntos
Apoptose/fisiologia , Hepatopatias/metabolismo , Hepatopatias/patologia , PPAR gama/metabolismo , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia , Fatores Etários , Alanina Transaminase/sangue , Animais , Pressão Sanguínea , Caspase 3/metabolismo , Regulação para Baixo/fisiologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Hipoglicemiantes/farmacologia , Hepatopatias/tratamento farmacológico , Masculino , Neutrófilos/patologia , PPAR gama/genética , Peroxidase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Ressuscitação , Índice de Gravidade de Doença , Tiazolidinedionas/farmacologia , Proteína X Associada a bcl-2/metabolismo
13.
Immunology ; 124(1): 51-7, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18028370

RESUMO

Peroxisome proliferator activated receptor-gamma (PPARgamma) has been reported to exert anti-inflammatory properties in endotoxic shock and sepsis. One phenomenon that alters the inflammatory response to endotoxin [lipopolysaccharide (LPS)] is endotoxin tolerance, which is caused by previous exposure to endotoxin. Here, we investigate whether changes in endogenous PPARgamma function regulate this phenomenon using three different models of LPS-induced tolerance in macrophages. In a first in vitro model, previous LPS exposure of murine J774.2 macrophages suppressed tumour necrosis factor-alpha (TNF-alpha) release in response to subsequent LPS challenge. Treatment of J774.2 cells with the PPARgamma inhibitor GW9662 did not alter tolerance induction because these cells were still hyporesponsive to the secondary LPS challenge. In a second ex vivo model, primary rat peritoneal macrophages from LPS-primed rats exhibited suppression of thromboxane B2 and TNF-alpha production, while maintaining nitrite production in response to in vitro LPS challenge. Pretreatment of rats with the PPARgamma inhibitor GW9662 in vivo failed to alter the tolerant phenotype of these primary macrophages. In a third ex vivo model, primary peritoneal macrophages with conditional deletion of PPARgamma were harvested from LPS-primed Cre-lox mice (Cre+/+ PPARgamma-/-) and exhibited significant suppression of TNF-alpha production in response to in vitro LPS challenge. Furthermore, both LPS-primed PPARgamma-deficient Cre+/+ PPARgamma-/- mice and wild-type Cre-/- PPARgamma+/+ mice exhibited reduced plasma TNF-alpha levels in response to a high dose of LPS in vivo. These data demonstrate that PPARgamma does not play a role in the LPS-induced tolerant phenotype in macrophages.


Assuntos
Tolerância Imunológica/imunologia , Macrófagos Peritoneais/imunologia , PPAR gama/imunologia , Anilidas/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta Imunológica , Tolerância Imunológica/efeitos dos fármacos , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Knockout , PPAR gama/antagonistas & inibidores , PPAR gama/deficiência , Ratos , Ratos Long-Evans , Fator de Necrose Tumoral alfa/biossíntese
14.
Shock ; 28(5): 554-63, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17589386

RESUMO

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a nuclear receptor that regulates diverse biological functions including inflammation. The PPARgamma ligands have been reported to exert cardioprotective effects and attenuate myocardial reperfusion injury. Here, we examined the molecular mechanisms of their anti-inflammatory effects. Male Wistar rats were subjected to myocardial ischemia and reperfusion and were treated with the PPAR-gamma ligands, 15-deoxy-Delta-prostaglandin J2 (15d-PGJ2) or ciglitazone, or with vehicle only, in the absence or presence of the selective PPAR-gamma antagonist GW-9662. In vehicle-treated rats, myocardial injury was associated with elevated tissue activity of myeloperoxidase, indicating infiltration of neutrophils, and elevated plasma levels of creatine kinase and tumor necrosis factor-alpha. These events were preceded by activation of the nuclear factor-kappaB pathway. The PPAR-gamma DNA binding was also increased in the heart after reperfusion. Treatment with ciglitazone or 15d-PGJ2 reduced myocardial damage and neutrophil infiltration and blunted creatine kinase levels and cytokine production. The beneficial effects of both ligands were associated with enhancement of PPAR-gamma DNA binding and reduction of nuclear factor-kappaB activation. Treatment with 15d-PGJ2, but not ciglitazone, enhanced DNA binding of heat shock factor 1 and upregulated the expression of the cardioprotective heat shock protein 70. Treatment with 15d-PGJ2, but not ciglitazone, also induced a significant increase in nuclear phosphorylation of the prosurvival kinase Akt. The cardioprotection afforded by ciglitazone was attenuated by the PPAR-gamma antagonist GW-9662. In contrast, GW-9662 did not affect the beneficial effects afforded by 15d-PGJ2. Thus, our data suggest that treatment with these chemically unrelated PPAR-gamma ligands results in diverse anti-inflammatory mechanisms.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hipoglicemiantes/farmacocinética , Fatores Imunológicos/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , NF-kappa B/metabolismo , PPAR gama/agonistas , Prostaglandina D2/análogos & derivados , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Fatores de Transcrição/metabolismo , Anilidas/farmacologia , Animais , Creatina Quinase/sangue , Proteínas de Choque Térmico HSP70/biossíntese , Fatores de Transcrição de Choque Térmico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Ligantes , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , PPAR gama/metabolismo , Peroxidase/metabolismo , Prostaglandina D2/farmacologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/sangue , Regulação para Cima/efeitos dos fármacos
15.
Crit Care Med ; 35(5): 1348-55, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17414724

RESUMO

OBJECTIVE: Insulin connecting peptide (c-peptide) aids the folding of proinsulin and has been considered to have little biological activity. Recently, c-peptide has been shown to improve diabetic neuropathy and nephropathy as well as vascular inflammation. In vitro studies have reported that c-peptide may activate peroxisome proliferator-activated receptor-gamma, a nuclear transcription factor that plays a regulatory role in inflammation. This study was designed to investigate the biological effects of c-peptide during endotoxemia. DESIGN: Prospective, randomized laboratory investigation that used an established murine model of endotoxic shock. SETTING: University hospital laboratory. SUBJECTS: Mice were subjected to endotoxic shock by intraperitoneal administration of Escherichia coli lipopolysaccharide. INTERVENTIONS: Mice received vehicle or c-peptide (70-140 nmol/kg) intraperitoneally at 3 hrs and 6 hrs after lipopolysaccharide. Mortality was monitored for 96 hrs. In a separate experiment, mice were killed at 4, 7, and 18 hrs after lipopolysaccharide administration. Lungs and plasma were collected for biochemical assays. MEASUREMENTS AND MAIN RESULTS: In vehicle-treated mice, endotoxic shock resulted in lung injury and was associated with a 41% survival rate and elevation in plasma tumor necrosis factor-alpha, macrophage inflammatory protein-1alpha, monocyte chemoattractant protein-1, and keratinocyte-derived chemokine levels. Lung nuclear levels of phosphorylated extracellular signal-regulated kinases 1 and 2 were significantly increased in vehicle-treated mice. On the other hand, lung nuclear expression and DNA binding of proliferator-activated receptor-gamma were decreased in comparison to control animals. Treatment with c-peptide (140 nmol/kg) improved survival rate (68%) and reduced plasma levels of tumor necrosis factor-alpha, macrophage inflammatory protein-1alpha, and monocyte chemoattractant protein-1, but it did not exert hypoglycemic effects. Treatment with c-peptide also up-regulated lung nuclear expression and DNA binding of proliferator-activated receptor-gamma and reduced phosphorylation of extracellular signal-regulated kinases 1 and 2 in comparison to vehicle-treated mice. CONCLUSIONS: Our data show that c-peptide has beneficial effects in endotoxic shock, and this therapeutic effect is associated with activation of proliferator-activated receptor-gamma.


Assuntos
Peptídeo C/uso terapêutico , Endotoxemia/terapia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pulmão/efeitos dos fármacos , PPAR gama/metabolismo , Animais , Glicemia/efeitos dos fármacos , Peptídeo C/farmacologia , Quimiocina CCL2/sangue , Quimiocina CCL2/efeitos dos fármacos , Quimiocina CCL4 , Quimiocinas/sangue , Modelos Animais de Doenças , Endotoxemia/metabolismo , Endotoxemia/mortalidade , Escherichia coli , Lipopolissacarídeos , Pulmão/patologia , Proteínas Inflamatórias de Macrófagos/sangue , Masculino , Camundongos , Distribuição Aleatória , Taxa de Sobrevida , Fator de Necrose Tumoral alfa/sangue
16.
Shock ; 26(2): 146-53, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16878022

RESUMO

Peroxisome proliferator-activated receptor-gamma (PPARgamma) and liver X receptor-alpha (LXRalpha) are nuclear ligand-activated transcription factors, which regulate lipid metabolism and inflammation. Murine J774.2 macrophages were stimulated with Escherichia coli lipopolysaccharide (concentration, 10 microg/mL) with or without the PPARgamma ligand, 15-deoxy-Delta prostaglandin J2 (15d-PGJ2), or the LXRalpha ligands, 22(R)-hydroxycholesterol and T0901317 (concentration range, 0.01-10 micromol/L), alone or in combination. Nitric oxide (NO) metabolites and tumor necrosis factor alpha production, inducible NO synthase expression, and mitochondrial respiration were measured. When added to the cells as single agents, 15d-PGJ2, 22(R)-hydroxycholesterol, or T0901317 reduced the lipopolysaccharide-induced NO and tumor necrosis factor alpha production and the inducible NO synthase expression, and partially maintained mitochondrial respiration in a concentration-dependent manner. When added to the cells in combination at suboptimal concentrations, 15d-PGJ2 with 22(R)-hydroxycholesterol, or 15d-PGJ2 with T0901317, exerted anti-inflammatory effects similar to much higher concentrations (10,000-fold to 100,000-fold) of each ligand alone. The anti-inflammatory effects of these ligands, alone or in combination, were associated with reduction of nuclear factor-kappaB activation and with enhancement of PPARgamma DNA binding. LXRalpha expression was upregulated in response to 15d-PGJ2 and to the LXRalpha ligands when added alone or in combination. Immunoprecipitation experiments revealed that PPARgamma interacted with LXRalpha. Our data demonstrate that the PPARgamma ligand, 15d-PGJ2, and the LXRalpha ligands, 22(R)-hydroxycholesterol and T0901317, although binding to different nuclear receptors (i.e., PPARgamma and LXRalpha, respectively), affect mediator production through common cell signaling events and exert a synergistic potentiation in a combined treatment at suboptimal concentrations. Thus, our data suggest that PPARgamma and LXRalpha may interact in controlling the inflammatory response in macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas de Ligação a DNA/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , PPAR gama/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Sinergismo Farmacológico , Hidrocarbonetos Fluorados , Hidroxicolesteróis/farmacologia , Inflamação/tratamento farmacológico , Ligantes , Lipopolissacarídeos , Receptores X do Fígado , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Nucleares Órfãos , PPAR gama/efeitos dos fármacos , PPAR gama/genética , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais , Sulfonamidas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
17.
Immunology ; 113(4): 509-17, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15554929

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP-1) is activated in response to DNA injury in the nucleus of eukaryotic cells and has been implicated in intestinal barrier dysfunction during inflammatory bowel diseases. In this study we investigated whether PARP-1 may regulate the inflammatory response of experimental colitis at the level of signal transduction mechanisms. Mice genetically deficient of PARP-1 (PARP-1(-/-)) and wild-type littermates were subjected to rectal instillation of trinitrobenzene sulphonic acid (TNBS). Signs of inflammation were monitored for 14 days. In wild-type mice, TNBS treatment resulted in colonic ulceration and marked apoptosis, which was associated with decreased colon content of the antiapoptotic protein Bcl-2, whereas the proapoptotic Bax was unchanged. Elevated levels of plasma nitrate/nitrite, metabolites of nitric oxide (NO), were also found. These inflammatory events were associated with activation of c-Jun-NH(2) terminal kinase (JNK), phosphorylation of c-Jun and activation of the nuclear transcription factor activator protein-1 (AP-1) in the colon. In contrast, PARP-1(-/-) mice exhibited a significant reduction of colon damage and apoptosis, which was associated with increased colonic expression of Bcl-2 and lower levels of plasma nitrate/nitrite when compared to wild-type mice. Amelioration of colon damage was associated with a significant reduction of the activation of JNK and reduction of the DNA binding of AP-1. The data indicate that PARP-1 exerts a pathological role in colitis possibly by regulating the early stress-related transcriptional response through a positive modulation of the AP-1 and JNK pathways.


Assuntos
Apoptose , Colite/fisiopatologia , Poli(ADP-Ribose) Polimerases/fisiologia , Fator de Transcrição AP-1/metabolismo , Animais , Colite/metabolismo , Colite/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase 4 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2
18.
J Immunol ; 169(3): 1401-9, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12133965

RESUMO

TNF-alpha is a mediator of lethality in experimental infections by group B streptococcus (GBS), an important human pathogen. Little is known of signal transduction pathways involved in GBS-induced TNF-alpha production. Here we investigate the role of mitogen-activated protein kinases (MAPKs) and NF-kappa B in TNF-alpha production by human monocytes stimulated with GBS or LPS, used as a positive control. Western blot analysis of cell lysates indicates that extracellular signal-regulated kinase 1/2 (ERK 1/2), p38, and c-Jun N-terminal kinase MAPKs, as well as I kappa B alpha, became phosphorylated, and hence activated, in both LPS- and GBS-stimulated monocytes. The kinetics of these phosphorylation events, as well as those of TNF-alpha production, were delayed by 30-60 min in GBS-stimulated, relative to LPS-stimulated, monocytes. Selective inhibitors of ERK 1/2 (PD98059 or U0126), p38 (SB203580), or NF-kappa B (caffeic acid phenetyl ester (CAPE)) could all significantly reduce TNF-alpha production, although none of the inhibitors used alone was able to completely prevent TNF-alpha release. However, this was completely blocked by combinations of the inhibitors, including PD98059-SB203580, PD98059-CAPE, or SB203580-CAPE combinations, in both LPS- and GBS-stimulated monocytes. In conclusion, our data indicate that the simultaneous activation of multiple pathways, including NF-kappa B, ERK 1/2, and p38 MAPKs, is required to induce maximal TNF-alpha production. Accordingly, in septic shock caused by either GBS or Gram-negative bacteria, complete inhibition of TNF-alpha release may require treatment with drugs or drug combinations capable of inhibiting multiple activation pathways.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/fisiologia , NF-kappa B/fisiologia , Streptococcus agalactiae/fisiologia , Fator de Necrose Tumoral alfa/biossíntese , Ativação Enzimática , Humanos , Lipopolissacarídeos/farmacologia , Monócitos/fisiologia , Proteína Quinase C/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA