Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 244(Pt 1): 949-956, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28847085

RESUMO

This study evaluated the effect of steam explosion on the chemical composition and biomethane potential of corn stover using temperatures ranging between 140 and 220°C and pretreatment times ranging between 2 and 15min. Biodegradation kinetics during the anaerobic digestion of untreated and corn stover, pretreated at two different intensities, 140°C for 5min and 180°C for 5min, were studied in tandem. Results showed that pretreatment at 160°C for 2min improved the methane yield by 22%. Harsher pretreatment conditions led to lower hemicellulose contents and methane yields, as well as higher lignin contents, which may be due to the formation of pseudo-lignin. The biodegradation kinetics trial demonstrated that steam explosion enhances the degradation of structural carbohydrates and acid insoluble lignin.


Assuntos
Biocombustíveis , Vapor , Explosões , Cinética , Lignina , Zea mays
2.
Environ Sci Technol ; 45(5): 1949-54, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21299241

RESUMO

Spherical iron-carbon nanocomposites were developed through a facile aerosol-based process with sucrose and iron chloride as starting materials. These composites exhibit multiple functionalities relevant to the in situ remediation of chlorinated hydrocarbons such as trichloroethylene (TCE). The distribution and immobilization of iron nanoparticles on the surface of carbon spheres prevents zerovalent nanoiron aggregation with maintenance of reactivity. The aerosol-based carbon microspheres allow adsorption of TCE, thus removing dissolved TCE rapidly and facilitating reaction by increasing the local concentration of TCE in the vicinity of iron nanoparticles. The strongly adsorptive property of the composites may also prevent release of any toxic chlorinated intermediate products. The composite particles are in the optimal range for transport through groundwater saturated sediments. Furthermore, those iron-carbon composites can be designed at low cost, the process is amenable to scale-up for in situ application, and the materials are intrinsically benign to the environment.


Assuntos
Carbono/química , Recuperação e Remediação Ambiental/métodos , Ferro/química , Nanocompostos/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Adsorção , Microscopia Eletrônica de Transmissão , Nanocompostos/ultraestrutura
3.
Environ Sci Technol ; 42(12): 4494-9, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18605576

RESUMO

Spherical silica particles containing nanoscale zerovalent iron were synthesized through an aerosol-assisted process. These particles are effective for groundwater remediation, with the environmentally benign silica particles serving as effective carriers for nanoiron transport. Incorporation of iron into porous sub-micrometer silica particles protects ferromagnetic iron nanoparticles from aggregation and may increase their subsurface mobility. Additionally, the presence of surface silanol groups on silica particles allows control of surface properties via silanol modification using organic functional groups. Aerosolized silica particles with functional alkyl moieties, such as ethyl groups on the surface, clearly adsorb solubilized trichloroethylene (TCE) in water. These materials may therefore act as adsorbents which have coupled reactivity characteristics. The nanoscale iron/silica composite particles with controlled surface properties have the potential to be efficiently applied for in situ source depletion and in the design of permeable reactive barriers.


Assuntos
Recuperação e Remediação Ambiental/métodos , Ferro/química , Dióxido de Silício/química , Tricloroetileno/isolamento & purificação , Nanotecnologia , Tamanho da Partícula
4.
Environ Sci Technol ; 42(23): 8871-6, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19192811

RESUMO

Effective in situ remediation of groundwater requires the successful delivery of reactive iron particles through soil. In this paper we report the transport characteristics of nanoscale zerovalent iron entrapped in porous silica particles and prepared through an aerosol-assisted process. The entrapment of iron nanoparticles into the silica matrix prevents their aggregation while maintaining the particles' reactivity. Furthermore, the silica particles are functionalized with alkyl groups and are extremely efficient in adsorbing dissolved trichloroethylene (TCE). Because of synthesis through the aerosol route, the particles are of the optimal size range (0.1-1 microm) for mobility through sediments. Column and capillary transport experiments confirm that the particles move far more effectivelythrough model soils than commercially available uncoated nanoscale reactive iron particles. Microcapillary experiments indicate that the particles partition to the interface of TCE droplets, further enhancing their potential for dense non-aqueous-phase liquid source-zone remediation.


Assuntos
Recuperação e Remediação Ambiental , Ferro/química , Movimento (Física) , Nanocompostos/química , Dióxido de Silício/química , Tricloroetileno/isolamento & purificação , Adsorção , Aerossóis/química , Filtração , Nanocompostos/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA