Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 744-759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38264772

RESUMO

Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.


Assuntos
Magnoliopsida , Magnoliopsida/genética , Tamanho do Genoma , Genoma de Planta , Poliploidia , Plantas/genética , Filogenia
2.
R Soc Open Sci ; 9(1): 211862, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35116168

RESUMO

Understanding the factors driving ecological and evolutionary interactions of economically important plant species is important for agricultural sustainability. The geography of crop wild relatives, including wild potatoes (Solanum section Petota), have received attention; however, such information has not been analysed in combination with phylogenetic histories, genomic composition and reproductive systems to identify potential species for use in breeding for abiotic stress tolerance. We used a combination of ordinary least-squares (OLS) and phylogenetic generalized least-squares (PGLM) analyses to identify the discrete climate classes that make up the climate niche that wild potato species inhabit in the context of breeding system and ploidy. Self-incompatible diploid or self-compatible polyploid species significantly increase the number of discrete climate classes within a climate niche inhabited. This result was sustained when correcting for phylogenetic non-independence in the linear model. Our results support the idea that specific breeding system and ploidy combinations increase niche breadth through the decoupling of geographical range and niche diversity, and therefore, these species may be of particular interest for crop adaptation to a changing climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA