Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 262: 115113, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37315362

RESUMO

In this study, we determined partition (Ksc/m) and diffusion (Dsc) coefficients of five different polycyclic aromatic hydrocarbons (PAH) migrating from squalane into and through the stratum corneum (s.c.) layer of the skin. Carcinogenic PAH have previously been detected in numerous polymer-based consumer products, especially those dyed with carbon black. Upon dermal contact with these products, PAH may penetrate into and through the viable layers of the skin by passing the s.c. and thus may become bioavailable. Squalane, a frequent ingredient in cosmetics, has also been used as a polymer surrogate matrix in previous studies. Ksc/m and Dsc are relevant parameters for risk assessment because they allow estimating the potential of a substance to become bioavailable upon dermal exposure. We developed an analytical method involving incubation of pigskin with naphthalene, anthracene, pyrene, benzo[a]pyrene and dibenzo[a,h]pyrene in Franz diffusion cell assays under quasi-infinite dose conditions. PAH were subsequently quantified within individual s.c. layers by gas chromatography coupled to tandem mass spectrometry. The resulting PAH depth profiles in the s.c. were fitted to a solution of Fick's second law of diffusion, yielding Ksc/m and Dsc. The decadic logarithm logKsc/m ranged from -0.43 to +0.69 and showed a trend to higher values for PAH with higher molecular masses. Dsc, on the other hand, was similar for the four higher molecular mass PAH but about 4.6-fold lower than for naphthalene. Moreover, our data suggests that the s.c./viable epidermis boundary layer represents the most relevant barrier for the skin penetration of higher molecular mass PAH. Finally, we empirically derived a mathematical description of the concentration depth profiles that better fits our data. We correlated the resulting parameters to substance specific constants such as the logarithmic octanol-water partition coefficient logP, Ksc/m and the removal rate at the s.c./viable epidermis boundary layer.

2.
Environ Int ; 176: 107952, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37224677

RESUMO

BACKGROUND: Azo dyes are used in textiles and leather clothing. Human exposure can occur from wearing textiles containing azo dyes. Since the body's enzymes and microbiome can cleave azo dyes, potentially resulting in mutagenic or carcinogenic metabolites, there is also an indirect health concern on the parent compounds. While several hazardous azo dyes are banned, many more are still in use that have not been evaluated systematically for potential health concerns. This systematic evidence map (SEM) aims to compile and categorize the available toxicological evidence on the potential human health risks of a set of 30 market-relevant azo dyes. METHODS: Peer-reviewed and gray literature was searched and over 20,000 studies were identified. These were filtered using Sciome Workbench for Interactive computer-Facilitated Text-mining (SWIFT) Review software with evidence stream tags (human, animal, in vitro) yielding 12,800 unique records. SWIFT Active (a machine-learning software) further facilitated title/abstract screening. DistillerSR software was used for additional title/abstract, full-text screening, and data extraction. RESULTS: 187 studies were identified that met populations, exposures, comparators, and outcomes (PECO) criteria. From this pool, 54 human, 78 animal, and 61 genotoxicity studies were extracted into a literature inventory. Toxicological evidence was abundant for three azo dyes (also used as food additives) and sparse for five of the remaining 27 compounds. Complementary search in ECHA's REACH database for summaries of unpublished study reports revealed evidence for all 30 dyes. The question arose of how this information can be fed into an SEM process. Proper identification of prioritized dyes from various databases (including U.S. EPA's CompTox Chemicals Dashboard) turned out to be a challenge. Evidence compiled by this SEM project can be evaluated for subsequent use in problem formulation efforts to inform potential regulatory needs and prepare for a more efficient and targeted evaluation in the future for human health assessments.


Assuntos
Compostos Azo , Carcinógenos , Exposição Ambiental , Humanos , Compostos Azo/toxicidade , Carcinógenos/análise , Carcinógenos/toxicidade , Corantes/toxicidade , Corantes/química , Mutagênicos/toxicidade , Mutagênicos/análise , Têxteis
3.
Arch Toxicol ; 93(12): 3503-3521, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659427

RESUMO

Aluminium is one of the most abundant elements in earth's crust and its manifold uses result in an exposure of the population from many sources. Developmental toxicity, effects on the urinary tract and neurotoxicity are known effects of aluminium and its compounds. Here, we assessed the health risks resulting from total consumer exposure towards aluminium and various aluminium compounds, including contributions from foodstuffs, food additives, food contact materials (FCM), and cosmetic products. For the estimation of aluminium contents in foodstuff, data from the German "Pilot-Total-Diet-Study" were used, which was conducted as part of the European TDS-Exposure project. These were combined with consumption data from the German National Consumption Survey II to yield aluminium exposure via food for adults. It was found that the average weekly aluminium exposure resulting from food intake amounts to approx. 50% of the tolerable weekly intake (TWI) of 1 mg/kg body weight (bw)/week, derived by the European Food Safety Authority (EFSA). For children, data from the French "Infant Total Diet Study" and the "Second French Total Diet Study" were used to estimate aluminium exposure via food. As a result, the TWI can be exhausted or slightly exceeded-particularly for infants who are not exclusively breastfed and young children relying on specially adapted diets (e.g. soy-based, lactose free, hypoallergenic). When taking into account the overall aluminium exposure from foods, cosmetic products (cosmetics), pharmaceuticals and FCM from uncoated aluminium, a significant exceedance of the EFSA-derived TWI and even the PTWI of 2 mg/kg bw/week, derived by the Joint FAO/WHO Expert Committee on Food Additives, may occur. Specifically, high exposure levels were found for adolescents aged 11-14 years. Although exposure data were collected with special regard to the German population, it is also representative for European and comparable to international consumers. From a toxicological point of view, regular exceedance of the lifetime tolerable aluminium intake (TWI/PTWI) is undesirable, since this results in an increased risk for health impairments. Consequently, recommendations on how to reduce overall aluminium exposure are given.


Assuntos
Alumínio/toxicidade , Exposição Ambiental/efeitos adversos , Medição de Risco/métodos , Adolescente , Alumínio/farmacocinética , Animais , Carcinógenos/toxicidade , Criança , Pré-Escolar , Exposição Dietética/efeitos adversos , Exposição Dietética/análise , Exposição Ambiental/análise , Aditivos Alimentares/efeitos adversos , Contaminação de Alimentos/análise , Humanos , Lactente , Mutagênicos/toxicidade , Testes de Toxicidade Aguda
4.
Crit Rev Toxicol ; 49(9): 742-789, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31939687

RESUMO

For a few years, mineral oils and their potential adverse health effects have been a constant issue of concern in many regulatory areas such as food, cosmetics, other consumer products, and industrial chemicals. Analytically, two fractions can be distinguished: mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH). This paper aims at assessing the bioaccumulative potential and associated histopathological effects of MOSH as well as the carcinogenic potential of MOAH for consumer-relevant mineral oils. It also covers the absorption, distribution, metabolism, and excretion of MOSH and MOAH upon oral and dermal exposures. The use and occurrence of consumer-relevant, highly refined mineral oils in food, cosmetics and medicinal products are summarized, and estimates for the exposure of consumers are provided. Also addressed are the challenges in characterizing the substance identity of mineral oil products under REACH. Evidence from more recent autopsy and biopsy studies, along with information on decreasing food contamination levels, indicates a low risk for adverse hepatic lesions that may arise from the retention of MOSH in the liver. With respect to MOAH, at present there is no indication of any carcinogenic effects in animals dermally or orally exposed to highly refined mineral oils and waxes. Such products are used not only in cosmetics but also in medicinal products and as additives in food contact materials. The safety of these mineral oil-containing products is thus indirectly documented by their prevalent and long-term use, with a simultaneous lack of clinical and epidemiological evidence for adverse health effects.


Assuntos
Cosméticos , Contaminação de Alimentos , Óleo Mineral , Animais , Exposição Ambiental/estatística & dados numéricos , Humanos , Hidrocarbonetos/análise , Hidrocarbonetos Aromáticos/análise
5.
Arch Toxicol ; 91(2): 799-810, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26965496

RESUMO

Liver injury as a result of a sterile inflammation is closely linked to the activation of immune cells, including macrophages, by damaged hepatocytes. This interaction between immune cells and hepatocytes is as yet not considered in any of the in vitro test systems applied during the generation of new drugs. Here, we established and characterized a novel in vitro co-culture model with two human cell lines, HepG2 and differentiated THP-1. Ketoconazole, an antifungal drug known for its hepatotoxicity, was used as a model compound in the testing of the co-culture. Single cultures of HepG2 and THP-1 cells were studied as controls. Different metabolism patterns of ketoconazole were observed for the single and co-culture incubations as well as for the different cell types. The main metabolite N-deacetyl ketoconazole was found in cell pellets, but not in supernatants of cell cultures. Global proteome analysis showed that the NRF2-mediated stress response and the CXCL8 (IL-8) pathway were induced by ketoconazole treatment under co-culture conditions. The upregulation and ketoconazole-induced secretion of several pro-inflammatory cytokines, including CXCL8, TNF-α and CCL3, was observed in the co-culture system only, but not in single cell cultures. Taking together, we provide evidence that the co-culture model applied might be suitable to serve as tool for the prediction of chemical-induced sterile inflammation in liver tissue in vivo.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Cetoconazol/efeitos adversos , Testes de Toxicidade/métodos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Técnicas de Cocultura , Células Hep G2/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Cetoconazol/análogos & derivados , Cetoconazol/metabolismo , Cetoconazol/farmacocinética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas/análise , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Toxicology ; 314(1): 135-47, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24096155

RESUMO

As the developing brain is exquisitely vulnerable to chemical disturbances, testing for developmental neurotoxicity of a substance is an important aspect of characterizing its tissue specific toxicity. Mouse embryonic stem cells (mESCs) can be differentiated toward a neural phenotype, and this can be used as a model for early brain development. We developed a new in vitro assay using mESCs to predict adverse effects of chemicals and other compounds on neural development - the so-called DNT-EST. After treatment of differentiating stem cells for 48h or 72h, at two key developmental stages endpoint for neural differentiation, viability, and proliferation were assessed. As a reference, we similarly treated undifferentiated stem cells 2 days after plating for 48h or 72h in parallel to the differentiating stem cells. Here, we show that chemical testing of a training set comprising nine substances (six substances of known developmental toxicity and three without specific developmental neurotoxicity) enabled a mathematical prediction model to be formulated that provided 100% predictivity and accuracy for the given substances, including in leave-one-out cross-validation. The described test method can be performed within two weeks, including data analysis, and provides a prediction of the developmental neurotoxicity potency of a substance.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Neurotoxinas/toxicidade , Testes de Toxicidade/métodos , Algoritmos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Interpretação Estatística de Dados , Análise Discriminante , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células PC12 , Valor Preditivo dos Testes , Ratos , Tubulina (Proteína)/metabolismo
7.
Environ Health Perspect ; 120(11): 1489-94, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22871563

RESUMO

BACKGROUND: In biomedical research, the past two decades have seen the advent of in vitro model systems based on stem cells, humanized cell lines, and engineered organotypic tissues, as well as numerous cellular assays based on primarily established tumor-derived cell lines and their genetically modified derivatives. OBJECTIVE: There are high hopes that these systems might replace the need for animal testing in regulatory toxicology. However, despite increasing pressure in recent years to reduce animal testing, regulators are still reluctant to adopt in vitro approaches on a large scale. It thus seems appropriate to consider how we could realistically perform regulatory toxicity testing using in vitro assays only. DISCUSSION AND CONCLUSION: Here, we suggest an in vitro-only approach for regulatory testing that will benefit consumers, industry, and regulators alike.


Assuntos
Alternativas aos Testes com Animais/métodos , Poluentes Ambientais/toxicidade , Regulamentação Governamental , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais/instrumentação , Alternativas aos Testes com Animais/legislação & jurisprudência , Alternativas aos Testes com Animais/normas , Animais , Ecotoxicologia/instrumentação , Ecotoxicologia/métodos , Ecotoxicologia/normas , Humanos , Testes de Toxicidade/instrumentação , Testes de Toxicidade/normas
8.
FEBS J ; 273(17): 4055-71, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16899051

RESUMO

Many branchiopod crustaceans are endowed with extracellular, high-molecular-weight hemoglobins whose exact structural characteristics have remained a matter of conjecture. By using a broad spectrum of techniques, we provide precise and coherent information on the hemoglobin of one of the phylogenetically 'oldest' extant branchiopods, the tadpole shrimp Triops cancriformis. The hemoglobin dissociated under reducing conditions into two subunits, designated TcHbA and TcHbB, with masses of 35,775+/-4 and 36,055+/-4 Da, respectively, determined by ESI-MS. Nonreducing conditions showed only two disulfide-bridged dimers, a homodimer of TcHbA, designated D1 (71,548+/-5 Da), and the heterodimer D2 (71,828+/-5 Da). Carbamidomethylation of free SH groups revealed the presence of three cysteines per subunit and indicated one intrasubunit and one intersubunit disulfide bridge. Ultracentrifugation and light-scattering experiments under nondenaturating conditions yielded mass estimates that suggested an uneven number of 17 subunits forming the native hemoglobin. This unrealistic number resulted from the presence of two size classes (16-mer and 18-mer), which were recognized by native PAGE and Ferguson plot analysis. ESI-MS revealed three hemoglobin isoforms with masses of 588.1 kDa, 662.0 kDa, and 665.0 kDa. The 16-mer and the smaller 18-mer species are supposed to be composed of TcHbA only, given the dominance of this subunit type in SDS/PAGE. Transmission electron microscopy of negatively stained specimens showed a population of compact molecules with geometrical extensions of 14, 16 and 9 nm. The proposed stoichiometric model of quarternary structure provides the missing link to achieve a mechanistic understanding of the structure-function relationships among the multimeric arthropodan hemoglobins.


Assuntos
Crustáceos/química , Hemoglobinas/química , Subunidades Proteicas/química , Animais , Bovinos , Crustáceos/fisiologia , Hemoglobina A/química , Hemoglobina A/fisiologia , Hemoglobinas/fisiologia , Hemolinfa/química , Hemolinfa/fisiologia , Peso Molecular , Estrutura Quaternária de Proteína , Subunidades Proteicas/fisiologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA