Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(2): 876-901, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177925

RESUMO

FANCJ, a DNA helicase linked to Fanconi anemia and frequently mutated in cancers, counteracts replication stress by dismantling unconventional DNA secondary structures (such as G-quadruplexes) that occur at the DNA replication fork in certain sequence contexts. However, how FANCJ is recruited to the replisome is unknown. Here, we report that FANCJ directly binds to AND-1 (the vertebrate ortholog of budding yeast Ctf4), a homo-trimeric protein adaptor that connects the CDC45/MCM2-7/GINS replicative DNA helicase with DNA polymerase α and several other factors at DNA replication forks. The interaction between FANCJ and AND-1 requires the integrity of an evolutionarily conserved Ctf4-interacting protein (CIP) box located between the FANCJ helicase motifs IV and V. Disruption of the CIP box significantly reduces FANCJ association with the replisome, causing enhanced DNA damage, decreased replication fork recovery and fork asymmetry in cells unchallenged or treated with Pyridostatin, a G-quadruplex-binder, or Mitomycin C, a DNA inter-strand cross-linking agent. Cancer-relevant FANCJ CIP box variants display reduced AND-1-binding and enhanced DNA damage, a finding that suggests their potential role in cancer predisposition.


Assuntos
DNA , Neoplasias , Humanos , DNA/química , Replicação do DNA , Instabilidade Genômica , Proteínas de Manutenção de Minicromossomo
2.
Genes (Basel) ; 12(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802088

RESUMO

DDX11/ChlR1 is a super-family two iron-sulfur cluster containing DNA helicase with roles in DNA replication and sister chromatid cohesion establishment, and general chromosome architecture. Bi-allelic mutations of the DDX11 gene cause a rare hereditary disease, named Warsaw breakage syndrome, characterized by a complex spectrum of clinical manifestations (pre- and post-natal growth defects, microcephaly, intellectual disability, heart anomalies and sister chromatid cohesion loss at cellular level) in accordance with the multifaceted, not yet fully understood, physiological functions of this DNA helicase. In the last few years, a possible role of DDX11 in the onset and progression of many cancers is emerging. Herein we summarize the results of recent studies, carried out either in tumoral cell lines or in xenograft cancer mouse models, suggesting that DDX11 may have an oncogenic role. The potential of DDX11 DNA helicase as a pharmacological target for novel anti-cancer therapeutic interventions, as inferred from these latest developments, is also discussed.


Assuntos
RNA Helicases DEAD-box/genética , DNA Helicases/genética , Instabilidade Genômica/genética , Neoplasias/genética , Animais , Humanos , Oncogenes/genética
3.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802105

RESUMO

Several lines of evidence suggest the existence in the eukaryotic cells of a tight, yet largely unexplored, connection between DNA replication and sister chromatid cohesion. Tethering of newly duplicated chromatids is mediated by cohesin, an evolutionarily conserved hetero-tetrameric protein complex that has a ring-like structure and is believed to encircle DNA. Cohesin is loaded onto chromatin in telophase/G1 and converted into a cohesive state during the subsequent S phase, a process known as cohesion establishment. Many studies have revealed that down-regulation of a number of DNA replication factors gives rise to chromosomal cohesion defects, suggesting that they play critical roles in cohesion establishment. Conversely, loss of cohesin subunits (and/or regulators) has been found to alter DNA replication fork dynamics. A critical step of the cohesion establishment process consists in cohesin acetylation, a modification accomplished by dedicated acetyltransferases that operate at the replication forks. Defects in cohesion establishment give rise to chromosome mis-segregation and aneuploidy, phenotypes frequently observed in pre-cancerous and cancerous cells. Herein, we will review our present knowledge of the molecular mechanisms underlying the functional link between DNA replication and cohesion establishment, a phenomenon that is unique to the eukaryotic organisms.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Replicação do DNA/fisiologia , Fase G1/fisiologia , Telófase/fisiologia , Animais , Humanos , Coesinas
4.
Nat Commun ; 11(1): 4287, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855419

RESUMO

Warsaw Breakage Syndrome (WABS) is a rare disorder related to cohesinopathies and Fanconi anemia, caused by bi-allelic mutations in DDX11. Here, we report multiple compound heterozygous WABS cases, each displaying destabilized DDX11 protein and residual DDX11 function at the cellular level. Patient-derived cell lines exhibit sensitivity to topoisomerase and PARP inhibitors, defective sister chromatid cohesion and reduced DNA replication fork speed. Deleting DDX11 in RPE1-TERT cells inhibits proliferation and survival in a TP53-dependent manner and causes chromosome breaks and cohesion defects, independent of the expressed pseudogene DDX12p. Importantly, G-quadruplex (G4) stabilizing compounds induce chromosome breaks and cohesion defects which are strongly aggravated by inactivation of DDX11 but not FANCJ. The DNA helicase domain of DDX11 is essential for sister chromatid cohesion and resistance to G4 stabilizers. We propose that DDX11 is a DNA helicase protecting against G4 induced double-stranded breaks and concomitant loss of cohesion, possibly at DNA replication forks.


Assuntos
Anormalidades Múltiplas/etiologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Quadruplex G , Troca de Cromátide Irmã , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Proliferação de Células , RNA Helicases DEAD-box/química , DNA Helicases/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Estabilidade Proteica , Pseudogenes , RNA Helicases/genética , RNA Helicases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Síndrome , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Genes (Basel) ; 9(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469382

RESUMO

DDX11/ChlR1 (Chl1 in yeast) is a DNA helicase involved in sister chromatid cohesion and in DNA repair pathways. The protein belongs to the family of the iron⁻sulphur cluster containing DNA helicases, whose deficiencies have been linked to a number of diseases affecting genome stability. Mutations of human DDX11 are indeed associated with the rare genetic disorder named Warsaw breakage syndrome, showing both chromosomal breakages and chromatid cohesion defects. Moreover, growing evidence of a potential role in oncogenesis further emphasizes the clinical relevance of DDX11. Here, we illustrate the biochemical and structural features of DDX11 and how it cooperates with multiple protein partners in the cell, acting at the interface of DNA replication/repair/recombination and sister chromatid cohesion to preserve genome stability.

6.
PLoS One ; 8(8): e72408, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977294

RESUMO

The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2~7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase α-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2~7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes.


Assuntos
DNA Polimerase I/metabolismo , DNA Primase/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexos Multiproteicos/metabolismo , RNA/biossíntese , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Humanos , Hidrólise , Camundongos , Ligação Proteica , Subunidades Proteicas/metabolismo
7.
Biochem J ; 408(1): 87-95, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17683280

RESUMO

To protect their genetic material cells adopt different mechanisms linked to DNA replication, recombination and repair. Several proteins function at the interface of these DNA transactions. In the present study, we report on the identification of a novel archaeal DNA helicase. BlastP searches of the Sulfolobus solfataricus genome database allowed us to identify an open reading frame (SSO0112, 875 amino acid residues) having sequence similarity with the human RecQ5beta. The corresponding protein, termed Hel112 by us, was produced in Escherichia coli in soluble form, purified to homogeneity and characterized. Gel-filtration chromatography and glycerol-gradient sedimentation analyses revealed that Hel112 forms monomers and dimers in solution. Biochemical characterization of the two oligomeric species revealed that only the monomeric form has an ATP-dependent 3'-5' DNA-helicase activity, whereas, unexpectedly, both the monomeric and dimeric forms possess DNA strand-annealing capability. The Hel112 monomeric form is able to unwind forked and 3'-tailed DNA structures with high efficiency, whereas it is almost inactive on blunt-ended duplexes and bubble-containing molecules. This analysis reveals that S. solfataricus Hel112 shares some enzymatic features with the RecQ-like DNA helicases and suggests potential cellular functions of this protein.


Assuntos
DNA Helicases/metabolismo , DNA/metabolismo , Sulfolobus solfataricus/enzimologia , Trifosfato de Adenosina/metabolismo , Catálise , DNA Helicases/classificação , Dimerização , Hidrólise , Ligação Proteica , Especificidade por Substrato
8.
J Biol Chem ; 282(17): 12574-82, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17337732

RESUMO

Mini-chromosome maintenance (MCM) proteins form ring-like hexameric complexes that are commonly believed to act as the replicative DNA helicase at the eukaryotic/archaeal DNA replication fork. Because of their simplified composition with respect to the eukaryotic counterparts, the archaeal MCM complexes represent a good model system to use in analyzing the structural/functional relationships of these important replication factors. In this study the domain organization of the MCM-like protein from Sulfolobus solfataricus (Sso MCM) has been dissected by trypsin partial proteolysis. Three truncated derivatives of Sso MCM corresponding to protease-resistant domains were produced as soluble recombinant proteins and purified: the N-terminal domain (N-ter, residues 1-268); a fragment comprising the AAA+ and C-terminal domains (AAA+-C-ter, residues 269-686); and the C-terminal domain (C-ter, residues 504-686). All of the purified recombinant proteins behaved as monomers in solution as determined by analytical gel filtration chromatography, suggesting that the polypeptide chain integrity is required for stable oligomerization of Sso MCM. However, the AAA+-C-ter derivative, which includes the AAA+ motor domain and retains ATPase activity, was able to form dimers in solution when ATP was present, as analyzed by size exclusion chromatography and glycerol gradient sedimentation analyses. Interestingly, the AAA+-C-ter protein could displace oligonucleotides annealed to M13 single-stranded DNA although with a reduced efficiency in comparison with the full-sized Sso MCM. The implications of these findings for understanding the DNA helicase mechanism of the MCM complex are discussed.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Biológicos , Sulfolobus solfataricus/metabolismo , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Proteínas Arqueais/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Relação Estrutura-Atividade , Sulfolobus solfataricus/genética
9.
Extremophiles ; 11(2): 277-82, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17082970

RESUMO

The hyper-thermophilic archaeon Sulfolobus solfataricus possesses two functional DNA polymerases belonging to the B-family (Sso DNA pol B1) and to the Y-family (Sso DNA pol Y1). Sso DNA pol B1 recognizes the presence of uracil and hypoxanthine in the template strand and stalls synthesis 3-4 bases upstream of this lesion ("read-ahead" function). On the other hand, Sso DNA pol Y1 is able to synthesize across these and other lesions on the template strand. Herein we report evidence that Sso DNA pol B1 physically interacts with DNA pol Y1 by surface plasmon resonance measurements and immuno-precipitation experiments. The region of DNA pol B1 responsible for this interaction has been mapped in the central portion of the polypeptide chain (from the amino acid residue 482 to 617), which includes an extended protease hyper-sensitive linker between the N- and C-terminal modules (amino acid residues Asn482-Ala497) and the alpha-helices forming the "fingers" sub-domain (alpha-helices R, R' and S). These results have important implications for understanding the polymerase-switching mechanism on the damaged template strand during genome replication in S. solfataricus.


Assuntos
Proteínas Arqueais/metabolismo , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Genoma Arqueal/fisiologia , Sulfolobus solfataricus/enzimologia , Proteínas Arqueais/química , Dano ao DNA , DNA Polimerase Dirigida por DNA/química , Ligação Proteica , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície
10.
Nucleic Acids Res ; 32(17): 5223-30, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15459292

RESUMO

DNA primases are responsible for the synthesis of the short RNA primers that are used by the replicative DNA polymerases to initiate DNA synthesis on the leading- and lagging-strand at the replication fork. In this study, we report the purification and biochemical characterization of a DNA primase (Sso DNA primase) from the thermoacidophilic crenarchaeon Sulfolobus solfataricus. The Sso DNA primase is a heterodimer composed of two subunits of 36 kDa (small subunit) and 38 kDa (large subunit), which show sequence similarity to the eukaryotic DNA primase p60 and p50 subunits, respectively. The two polypeptides were co-expressed in Escherichia coli and purified as a heterodimeric complex, with a Stokes radius of about 39.2 A and a 1:1 stoichiometric ratio among its subunits. The Sso DNA primase utilizes poly-pyrimidine single-stranded DNA templates with low efficiency for de novo synthesis of RNA primers, whereas its synthetic function is specifically activated by thymine-containing synthetic bubble structures that mimic early replication intermediates. Interestingly, the Sso DNA primase complex is endowed with a terminal nucleotidyl-transferase activity, being able to incorporate nucleotides at the 3' end of synthetic oligonucleotides in a non-templated manner.


Assuntos
DNA Primase/metabolismo , Nucleotidiltransferases/metabolismo , Poli T/química , Sulfolobus/enzimologia , Trifosfato de Adenosina/metabolismo , DNA/química , DNA Primase/isolamento & purificação , Ativação Enzimática , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Oligorribonucleotídeos/biossíntese , Oligorribonucleotídeos/química , Poli T/metabolismo , RNA/biossíntese , Especificidade por Substrato , Moldes Genéticos
11.
J Biol Chem ; 279(47): 49222-8, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15371413

RESUMO

Herein we report the identification of amino acids of the Sulfolobus solfataricus mini-chromosome maintenance (MCM)-like DNA helicase (SsoMCM), which are critical for DNA binding/remodeling. The crystallographic structure of the N-terminal portion (residues 2-286) of the Methanothermobacter thermoautotrophicum MCM protein revealed a dodecameric assembly with two hexameric rings in a head-to-head configuration and a positively charged central channel proposed to encircle DNA molecules. A structure-guided alignment of the M. thermoautotrophicum and S. solfataricus MCM sequences identified positively charged amino acids in SsoMCM that could point to the center of the channel. These residues (Lys-129, Lys-134, His-146, and Lys-194) were changed to alanine. The purified mutant proteins were all found to form homo-hexamers in solution and to retain full ATPase activity. K129A, H146A, and K194A SsoMCMs are unable to bind DNA either in single- or double-stranded form in band shift assays and do not display helicase activity. In contrast, the substitution of lysine 134 to alanine affects only binding to duplex DNA molecules, whereas it has no effect on binding to single-stranded DNA and on the DNA unwinding activity. These results have important implications for the understanding of the molecular mechanism of the MCM DNA helicase action.


Assuntos
DNA Helicases/química , DNA/química , Proteína 1 de Manutenção de Minicromossomo/química , Sulfolobus solfataricus/metabolismo , Adenosina Trifosfatases/química , Alanina/química , Sequência de Aminoácidos , Aminoácidos/química , Cromatografia , Cromatografia em Gel , Cristalografia por Raios X , Bases de Dados como Assunto , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Histidina/química , Lisina/química , Methanobacteriaceae/metabolismo , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos
12.
J Biol Chem ; 279(41): 43008-12, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15292191

RESUMO

The archaeal replication apparatus appears to be a simplified version of the eukaryotic one with fewer polypeptides and simpler protein complexes. Herein, we report evidence that a Cdc6-like factor from the hyperthermophilic crenarchaea Sulfolobus solfataricus stimulates binding of the homohexameric MCM-like complex to bubble- and fork-containing DNA oligonucleotides that mimic early replication intermediates. This function does not require the Cdc6 ATP and DNA binding activities. These findings may provide important clues to understanding how the DNA replication initiation process has evolved in the more complex eukaryotic organisms.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/química , Proteínas de Saccharomyces cerevisiae/química , Sulfolobus/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Ciclo Celular/fisiologia , Cromossomos de Archaea , Replicação do DNA , DNA Arqueal/química , DNA Arqueal/metabolismo , Proteínas de Ligação a DNA/fisiologia , Relação Dose-Resposta a Droga , Imunoprecipitação , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Oligonucleotídeos/química , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/fisiologia
13.
Biochem J ; 381(Pt 3): 645-53, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15104537

RESUMO

In the present paper, we report that a Cdc6 (cell-division control)-like factor from the hyperthermophilic crenarchaeon Sulfolobus solfataricus (referred to as SsoCdc6-2) has a modular organization of its biological functions. A reliable model of the SsoCdc6-2 three-dimensional structure was built up, based on the significant sequence identity with the Pyrobaculum aerophylum Cdc6 (PaeCdc6), whose crystallographic structure is known. This allowed us to design two truncated forms of SsoCdc6-2: the DeltaC (residues 1-297, molecular mass 35 kDa) and the DeltaN (residues 298-400, molecular mass 11 kDa) proteins. The DeltaC protein contains the nucleotide-binding Rossmann fold and the Sensor-2 motif (Domains I and II in the PaeCdc6 structure), and retains the ability to bind and hydrolyse ATP. On the other hand, the DeltaN protein contains the C-terminal WH (winged helix)-fold (Domain III), and is able to bind DNA molecules and to inhibit the DNA helicase activity of the SsoMCM (mini-chromosome maintenance) complex, although with lesser efficiency with respect to the full-sized SsoCdc6-2. These results provide direct biochemical evidence that the Cdc6 WH-domain is responsible for DNA-binding and inhibition of MCM DNA helicase activity.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Sulfolobus/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/farmacologia , Processamento Alternativo/genética , Sequência de Aminoácidos , Proteínas Arqueais/biossíntese , Proteínas Arqueais/genética , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/metabolismo , Cromossomos de Archaea/metabolismo , DNA/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Sulfolobus/enzimologia
14.
J Biol Chem ; 278(47): 46424-31, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-12966100

RESUMO

Cdc6 proteins play an essential role in the initiation of chromosomal DNA replication in Eukarya. Genes coding for putative homologs of Cdc6 have been also identified in the genomic sequence of Archaea, but the properties of the corresponding proteins have been poorly investigated so far. Herein, we report the biochemical characterization of one of the three putative Cdc6-like factors from the hyperthermophilic crenarchaeon Sulfolobus solfataricus (SsoCdc6-1). SsoCdc6-1 was overproduced in Escherichia coli as a His-tagged protein and purified to homogeneity. Gel filtration and glycerol gradient ultracentrifugation experiments indicated that this protein behaves as a monomer in solution (molecular mass of about 45 kDa). We demonstrated that SsoCdc6-1 binds single- and double-stranded DNA molecules by electrophoretic mobility shift assays. SsoCdc6-1 undergoes autophosphorylation in vitro and possesses a weak ATPase activity, whereas the protein with a mutation in the Walker A motif (Lys-59 --> Ala) is completely unable to hydrolyze ATP and does not autophosphorylate. We found that SsoCdc6-1 strongly inhibits the ATPase and DNA helicase activity of the S. solfataricus MCM protein. These findings provide the first in vitro biochemical evidence of a functional interaction between a MCM complex and a Cdc6 factor and have important implications for the understanding of the Cdc6 biological function.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae , Sulfolobus/química , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Clonagem Molecular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação de Sentido Incorreto , Fosforilação , Homologia de Sequência
15.
EMBO Rep ; 4(3): 269-73, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12634844

RESUMO

Deranged oxidative metabolism is a property of many tumour cells. Oxidation of the deoxynucleotide triphosphate (dNTP) pool, as well as DNA, is a major cause of genome instability. Here, we report that two Y-family DNA polymerases of the archaeon Sulfolobus solfataricus strains P1 and P2 incorporate oxidized dNTPs into nascent DNA in an erroneous manner: the polymerases exclusively incorporate 8-OH-dGTP opposite adenine in the template, and incorporate 2-OH-dATP opposite guanine more efficiently than opposite thymine. The rate of extension of the nascent DNA chain following on from these incorporated analogues is only slightly reduced. These DNA polymerases have been shown to bypass a variety of DNA lesions. Thus, our results suggest that the Y-family DNA polymerases promote mutagenesis through the erroneous incorporation of oxidized dNTPs during DNA synthesis, in addition to facilitating translesion DNA synthesis. We also report that human DNA polymerase eta, a human Y-family DNA polymerase, incorporates the oxidized dNTPs in a similar erroneous manner.


Assuntos
DNA Arqueal/genética , DNA Arqueal/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Sulfolobus/enzimologia , Sulfolobus/genética , Desoxirribonucleotídeos/metabolismo , Humanos , Oxirredução
16.
J Biol Chem ; 277(14): 12118-27, 2002 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-11821426

RESUMO

Mini-chromosome Maintenance (MCM) proteins play an essential role in both initiation and elongation phases of DNA replication in Eukarya. Genes encoding MCM homologs are present also in the genomic sequence of Archaea and the MCM-like protein from the euryarchaeon Methanobacterium thermoautotrophicum (Mth MCM) was shown to possess a robust ATP-dependent 3'-5' DNA helicase activity in vitro. Herein, we report the first biochemical characterization of a MCM homolog from a crenarchaeon, the thermoacidophile Sulfolobus solfataricus (Sso MCM). Gel filtration and glycerol gradient centrifugation experiments indicate that the Sso MCM forms single hexamers (470 kDa) in solution, whereas the Mth MCM assembles into double hexamers. The Sso MCM has NTPase and DNA helicase activity, which preferentially acts on DNA duplexes containing a 5'-tail and is stimulated by the single-stranded DNA binding protein from S. solfataricus (Sso SSB). In support of this functional interaction, we demonstrated by immunological methods that the Sso MCM and SSB form protein.protein complexes. These findings provide the first in vitro biochemical evidence of a physical/functional interaction between a MCM complex and another replication factor and suggest that the two proteins may function together in vivo in important DNA metabolic pathways.


Assuntos
Cromossomos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Sulfolobus/metabolismo , Adenosina Trifosfatases/metabolismo , Western Blotting , Centrifugação , Cromatografia em Gel , Cromatografia em Camada Fina , DNA Helicases/química , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Humanos , Nucleotídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA