Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 180(3): 1480-1497, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31061106

RESUMO

Symbiotic nitrogen fixation by rhizobia in legume root nodules is a key source of nitrogen for sustainable agriculture. Genetic approaches have revealed important roles for only a few of the thousands of plant genes expressed during nodule development and symbiotic nitrogen fixation. Previously, we isolated >100 nodulation and nitrogen fixation mutants from a population of Tnt1-insertion mutants of Medigaco truncatula Using Tnt1 as a tag to identify genetic lesions in these mutants, we discovered that insertions in a M. truncatula nodule-specific polycystin-1, lipoxygenase, α-toxin (PLAT) domain-encoding gene, MtNPD1, resulted in development of ineffective nodules. Early stages of nodule development and colonization by the nitrogen-fixing bacterium Sinorhizobium meliloti appeared to be normal in the npd1 mutant. However, npd1 nodules ceased to grow after a few days, resulting in abnormally small, ineffective nodules. Rhizobia that colonized developing npd1 nodules did not differentiate completely into nitrogen-fixing bacteroids and quickly degraded. MtNPD1 expression was low in roots but increased significantly in developing nodules 4 d postinoculation, and expression accompanied invading rhizobia in the nodule infection zone and into the distal nitrogen fixation zone. A functional MtNPD1:GFP fusion protein localized in the space surrounding symbiosomes in infected cells. When ectopically expressed in tobacco (Nicotiana tabacum) leaves, MtNPD1 colocalized with vacuoles and the endoplasmic reticulum. MtNPD1 belongs to a cluster of five nodule-specific single PLAT domain-encoding genes, with apparent nonredundant functions.


Assuntos
Regulação da Expressão Gênica de Plantas , Fixação de Nitrogênio/genética , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/genética , Simbiose/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Mutação , Nitrogênio/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nodulação/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Domínios Proteicos , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Sinorhizobium meliloti/fisiologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
2.
Plant Physiol ; 176(3): 2315-2329, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29284744

RESUMO

Iron (Fe) is an essential micronutrient for symbiotic nitrogen fixation in legume nodules, where it is required for the activity of bacterial nitrogenase, plant leghemoglobin, respiratory oxidases, and other Fe proteins in both organisms. Fe solubility and transport within and between plant tissues is facilitated by organic chelators, such as nicotianamine and citrate. We have characterized a nodule-specific citrate transporter of the multidrug and toxic compound extrusion family, MtMATE67 of Medicago truncatula The MtMATE67 gene was induced early during nodule development and expressed primarily in the invasion zone of mature nodules. The MtMATE67 protein was localized to the plasma membrane of nodule cells and also the symbiosome membrane surrounding bacteroids in infected cells. In oocytes, MtMATE67 transported citrate out of cells in an Fe-activated manner. Loss of MtMATE67 gene function resulted in accumulation of Fe in the apoplasm of nodule cells and a substantial decrease in symbiotic nitrogen fixation and plant growth. Taken together, the results point to a primary role of MtMATE67 in citrate efflux from nodule cells in response to an Fe signal. This efflux is necessary to ensure Fe(III) solubility and mobility in the apoplasm and uptake into nodule cells. Likewise, MtMATE67-mediated citrate transport into the symbiosome space would increase the solubility and availability of Fe(III) for rhizobial bacteroids.


Assuntos
Ferro/metabolismo , Medicago truncatula/fisiologia , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citratos/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/farmacocinética , Medicago truncatula/microbiologia , Mutação , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose/fisiologia
3.
BMC Genomics ; 15: 712, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25156206

RESUMO

BACKGROUND: Legumes form root nodules to house nitrogen fixing bacteria of the rhizobium family. The rhizobia are located intracellularly in the symbiotic nodule cells. In the legume Medicago truncatula these cells produce high amounts of Nodule-specific Cysteine-Rich (NCR) peptides which induce differentiation of the rhizobia into enlarged, polyploid and non-cultivable bacterial cells. NCRs are similar to innate immunity antimicrobial peptides. The NCR gene family is extremely large in Medicago with about 600 genes. RESULTS: Here we used the Medicago truncatula Gene Expression Atlas (MtGEA) and other published microarray data to analyze the expression of 334 NCR genes in 267 different experimental conditions. We find that all but five of these genes are expressed in nodules but in no other plant organ or in response to any other biotic interaction or abiotic stress tested. During symbiosis, none of the genes are induced by Nod factors. The NCR genes are activated in successive waves during nodule organogenesis, correlated with bacterial infection of the nodule cells and with a specific spatial localization of their transcripts from the apical to the proximal nodule zones. However, NCR expression is not associated with nodule senescence. According to their Shannon entropy, a measure expressing tissue specificity of gene expression, the NCR genes are among the most specifically expressed genes in M. truncatula. Moreover, when activated in nodules, their expression level is among the highest of all genes. CONCLUSIONS: Together, these data show that the NCR gene expression is subject to an extreme tight regulation and is only activated during nodule organogenesis in the polyploid symbiotic cells.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Peptídeos/genética , Nódulos Radiculares de Plantas/genética , Envelhecimento/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Ativação Transcricional
4.
Plant Cell ; 25(9): 3584-601, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24082011

RESUMO

Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe regulator of symbiosome differentiation (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Sequência de Bases , Diferenciação Celular , Perfilação da Expressão Gênica , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Modelos Biológicos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mutagênese Insercional , Fixação de Nitrogênio , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/genética , Nodulação , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Via Secretória , Análise de Sequência de DNA , Sinorhizobium meliloti/fisiologia , Simbiose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Plant Physiol ; 159(4): 1686-99, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22679222

RESUMO

A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.


Assuntos
Medicago truncatula/genética , Mutagênese Insercional/genética , Nicotiana/genética , Fixação de Nitrogênio/genética , Retroelementos/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Simbiose/genética , Genes de Plantas/genética , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Morfogênese/genética , Mutação/genética , Micorrizas/fisiologia , Fenótipo , Nodulação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA