Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 19(2): 426-439, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35535798

RESUMO

Within the thymus, thymic epithelial cells (TECs) provide dedicated thymic stroma microenvironments for T cell development. Because TEC functionality is sensitive to aging and cytoablative therapies, unraveling the molecular elements that coordinate their thymopoietic role has fundamental and clinical implications. Particularly, the selection of CD4 T cells depends on interactions between TCRs expressed on T cell precursors and self-peptides:MHC II complexes presented by cortical TECs (cTECs). Although the macroautophagy/autophagy-lysosomal protein degradation pathway is implicated in CD4 T cell selection, the molecular mechanism that controls the generation of selecting MHC II ligands remains elusive. LAMP2 (lysosomal-associated membrane protein 2) is a well-recognized mediator of autolysosome (AL) maturation. We showed that LAMP2 is highly expressed in cTECs. Notably, genetic inactivation of Lamp2 in thymic stromal cells specifically impaired the development of CD4 T cells that completed positive selection, without misdirecting MHC II-restricted cells into the CD8 lineage. Mechanistically, defects in autophagy in lamp2-deficient cTECs were linked to alterations in MHC II processing, which was associated with a marked reduction in CD4 TCR repertoire diversity selected within the lamp2-deficient thymic stroma. Together, our findings suggest that LAMP2 interconnects the autophagy-lysosomal axis and the processing of selecting self-peptides:MHC II complexes in cTECs, underling its implications for the generation of a broad CD4 TCR repertoire.Abbreviations: AIRE: autoimmune regulator (autoimmune polyendocrinopathy candidiasis ectodermal dystrophy); AL: autolysosome; AP: autophagosome; Baf-A1: bafilomycin A1; B2M: beta-2 microglobulin; CTSL: cathepsin L; CD74/Ii: CD74 antigen (invariant polypeptide of major histocompatibility complex, class II antigen-associated); CFSE: carboxyfluorescein succinimidyl ester; CFU: colony-forming unit; CLIP: class II-associated invariant chain peptides; cTECs: cortical TECs dKO: double knockout; DN: double negative; DP: double positive; ENPEP/LY51: glutamyl aminopeptidase; FOXP3: forkhead box; P3 IFNG/IFNγ: interferon gamma; IKZF2/HELIOS: IKAROS family zinc finger 2; IL2RA/CD25: interleukin 2 receptor, alpha chain; KO: knockout; LAMP2: lysosomal-associated membrane protein 2; LIP: lymphopenia-induced proliferation; Lm: Listeria monocytogenes; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MHC: major histocompatibility complex; mTECs: medullary TECs; PRSS16/TSSP: protease, serine 16 (thymus); SELL/CD62L: selectin, lymphocyte; SP: single positive; TCR: T cell receptor; TCRB: T cell receptor beta chain; TECs: thymic epithelial cells; UEA-1: Ulex europaeus agglutinin-1; WT: wild-type.


Assuntos
Autofagia , Linfócitos T CD4-Positivos , Animais , Camundongos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Autofagia/genética , Timo/metabolismo , Epitélio/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Células Epiteliais/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Peptídeos/metabolismo , Camundongos Endogâmicos C57BL
2.
J Med Microbiol ; 70(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33734952

RESUMO

Introduction. Oral tissues are generally homeostatic despite exposure to many potential inflammatory agents including the resident microbiota. This requires the balancing of inflammation by regulatory mechanisms and/or anti-inflammatory commensal bacteria. Thus, the levels of anti-inflammatory commensal bacteria in resident populations may be critical in maintaining this homeostatic balance.Hypothesis/Gap Statement. The incidence of immunosuppressive streptococci in the oral cavity is not well established. Determining the proportion of these organisms and the mechanisms involved may help to understand host-microbe homeostasis and inform development of probiotics or prebiotics in the maintenance of oral health.Aim. To determine the incidence and potential modes of action of immunosuppressive capacity in resident oral streptococci.Methodology. Supragingival plaque was collected from five healthy participants and supragingival and subgingival plaque from five with gingivitis. Twenty streptococci from each sample were co-cultured with epithelial cells±flagellin or LL-37. CXCL8 secretion was detected by ELISA, induction of cytotoxicity in human epithelial cells by lactate dehydrogenase release and NFκB-activation using a reporter cell line. Bacterial identification was achieved through partial 16S rRNA gene sequencing and next-generation sequencing.Results. CXCL8 secretion was inhibited by 94/300 isolates. Immunosuppressive isolates were detected in supragingival plaque from healthy (4/5) and gingivitis (4/5) samples, and in 2/5 subgingival (gingivitis) plaque samples. Most were Streptococcus mitis/oralis. Seventeen representative immunosuppressive isolates all inhibited NFκB activation. The immunosuppressive mechanism was strain specific, often mediated by ultra-violet light-labile factors, whilst bacterial viability was essential in certain species.Conclusion. Many streptococci isolated from plaque suppressed epithelial cell CXCL8 secretion, via inhibition of NFκB. This phenomenon may play an important role in oral host-microbe homeostasis.


Assuntos
Imunomodulação , Interleucina-8/metabolismo , Microbiota/imunologia , Boca/microbiologia , NF-kappa B/metabolismo , Streptococcus/imunologia , Células A549 , Linhagem Celular , Células Epiteliais/metabolismo , Gengiva/microbiologia , Gengivite/microbiologia , Humanos , Microbiota/genética , Streptococcus/classificação , Streptococcus/genética , Streptococcus/isolamento & purificação
3.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32819974

RESUMO

BACKGROUND: The immunological microenvironment of primary high-grade serous carcinomas (HGSCs) has a major impact on disease outcome. Conversely, little is known on the microenvironment of metastatic HGSCs and its potential influence on patient survival. Here, we explore the clinical relevance of the immunological configuration of HGSC metastases. METHODS: RNA sequencing was employed on 24 paired primary tumor microenvironment (P-TME) and metastatic tumor microenvironment (M-TME) chemotherapy-naive HGSC samples. Immunohistochemistry was used to evaluate infiltration by CD8+ T cells, CD20+ B cells, DC-LAMP+ (lysosomal-associated membrane protein 3) dendritic cells (DCs), NKp46+ (natural killer) cells and CD68+CD163+ M2-like tumor-associated macrophages (TAMs), abundance of PD-1+ (programmed cell death 1), LAG-3+ (lymphocyte-activating gene 3) cells, and PD-L1 (programmed death ligand 1) expression in 80 samples. Flow cytometry was used for functional assessments on freshly resected HGSC samples. RESULTS: 1468 genes were differentially expressed in the P-TME versus M-TME of HGSCs, the latter displaying signatures of extracellular matrix remodeling and immune infiltration. M-TME infiltration by immune effector cells had little impact on patient survival. Accordingly, M-TME-infiltrating T cells were functionally impaired, but not upon checkpoint activation. Conversely, cytokine signaling in favor of M2-like TAMs activity appeared to underlie inhibited immunity in the M-TME and poor disease outcome. CONCLUSIONS: Immunosuppressive M2-like TAM infiltrating metastatic sites limit clinically relevant immune responses against HGSCs.


Assuntos
Biomarcadores Tumorais/metabolismo , Terapia de Imunossupressão/métodos , Macrófagos/imunologia , Neoplasias Ovarianas/imunologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Estudos Retrospectivos , Microambiente Tumoral
4.
Lupus Sci Med ; 6(1): e000328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413850

RESUMO

OBJECTIVE: When faced with clinical symptoms of scarring alopecia-the standard diagnostic pathway involves a scalp biopsy which is an invasive and expensive procedure. This project aimed to assess if plucked hair follicles (HFs) containing living epithelial cells can offer a non-invasive approach to diagnosing inflammatory scalp lesions. METHODS: Lesional and non-lesional HFs were extracted from the scalp of patients with chronic discoid lupus erythematosus (CDLE), psoriasis and healthy controls. RNA was isolated from plucked anagen HFs and microarray, as well as quantitative real-time PCR was performed. RESULTS: Here, we report that gene expression analysis of only a small number of HF plucked from lesional areas of the scalp is sufficient to differentiate CDLE from psoriasis lesions or healthy HF. The expression profile from CDLE HFs coincides with published profiles of CDLE from skin biopsy. Genes that were highly expressed in lesional CDLE corresponded to well-known histopathological diagnostic features of CDLE and included those related to apoptotic cell death, the interferon signature, complement components and CD8+ T-cell immune responses. CONCLUSIONS: We therefore propose that information obtained from this non-invasive approach are sufficient to diagnose scalp lupus erythematosus. Once validated in routine clinical settings and compared with other scarring alopecias, this rapid and non-invasive approach will have great potential for paving the way for future diagnosis of inflammatory scalp lesions.

5.
Sci Rep ; 9(1): 6152, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992471

RESUMO

Aspirin is a widely used anti-inflammatory and antithrombotic drug also known in recent years for its promising chemopreventive antineoplastic properties, thought to be mediated in part by its ability to induce apoptotic cell death. However, the full range of mechanisms underlying aspirin's cancer-preventive properties is still elusive. In this study, we observed that aspirin impaired both the synthesis and transport of acetyl-coenzyme A (acetyl-CoA) into the mitochondria of manganese superoxide dismutase (MnSOD)-deficient Saccharomyces cerevisiae EG110 yeast cells, but not of the wild-type cells, grown aerobically in ethanol medium. This occurred at both the gene level, as indicated by microarray and qRT-PCR analyses, and at the protein level as indicated by enzyme assays. These results show that in redox-compromised MnSOD-deficient yeast cells, but not in wild-type cells, aspirin starves the mitochondria of acetyl-CoA and likely causes energy failure linked to mitochondrial damage, resulting in cell death. Since acetyl-CoA is one of the least-studied targets of aspirin in terms of the latter's propensity to prevent cancer, this work may provide further mechanistic insight into aspirin's chemopreventive behavior with respect to early stage cancer cells, which tend to have downregulated MnSOD and are also redox-compromised.


Assuntos
Acetilcoenzima A/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Fibrinolíticos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/metabolismo
6.
PLoS One ; 8(1): e52449, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308112

RESUMO

Macrophages play a critical role in the innate immune response. To respond in a rapid and efficient manner to challenges in the micro-environment, macrophages are able to differentiate towards classically (M1) or alternatively (M2) activated phenotypes. Synthetic, innate defense regulators (IDR) peptides, designed based on natural host defence peptides, have enhanced immunomodulatory activities and reduced toxicity leading to protection in infection and inflammation models that is dependent on innate immune cells like monocytes/macrophages. Here we tested the effect of IDR-1018 on macrophage differentiation, a process essential to macrophage function and the immune response. Using transcriptional, protein and systems biology analysis, we observed that differentiation in the presence of IDR-1018 induced a unique signature of immune responses including the production of specific pro and anti-inflammatory mediators, expression of wound healing associated genes, and increased phagocytosis of apoptotic cells. Transcription factor IRF4 appeared to play an important role in promoting this IDR-1018-induced phenotype. The data suggests that IDR-1018 drives macrophage differentiation towards an intermediate M1-M2 state, enhancing anti-inflammatory functions while maintaining certain pro-inflammatory activities important to the resolution of infection. Synthetic peptides like IDR-1018, which act by modulating the immune system, could represent a powerful new class of therapeutics capable of treating the rising number of multidrug resistant infections as well as disorders associated with dysregulated immune responses.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/imunologia , Fagocitose/efeitos dos fármacos , Fatores de Transcrição/genética
7.
J Leukoc Biol ; 91(4): 599-607, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22246800

RESUMO

Cathelicidin LL-37 is a multifunctional, immunomodulatory and antimicrobial host-defense peptide of the human immune system. Here, we identified the role of SFKs in mediating the chemokine induction activity of LL-37 in monocytic cells. LL-37 induced SFK phosphorylation; and chemical inhibitors of SFKs suppressed chemokine production in response to LL-37 stimulation. SFKs were required for the downstream activation of AKT, but Ca(2+)-flux and MAPK induction were SFK-independent. Through systematic siRNA knockdown of SFK members, a requirement for Lyn in mediating LL-37 activity was identified. The involvement of Lyn in cathelicidin activities was further confirmed using Lyn-knockout mouse BMDMs. The role of SFKs and Lyn was also demonstrated in the activities of the synthetic cationic IDR peptides, developed as novel, immunomodulatory therapeutics. These findings elucidate the common molecular mechanisms mediating the chemokine induction activity of natural and synthetic cationic peptides in monocytic cells and identify SFKs as a potential target for modulating peptide responses.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Fatores Imunológicos/farmacologia , Monócitos/imunologia , Quinases da Família src/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/imunologia , Cálcio/imunologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Fatores Imunológicos/síntese química , Fatores Imunológicos/imunologia , Masculino , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo , Catelicidinas
8.
J Immunol ; 186(12): 7243-54, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21576504

RESUMO

Classical (M1) and alternative (M2) polarization of mononuclear cells (MNCs) such as monocyte and macrophages is known to occur in response to challenges within a microenvironment, like the encounter of a pathogen. LPS, also known as endotoxin, is a potent inducer of inflammation and M1 polarization. LPS can also generate an effect in MNCs known as endotoxin tolerance, defined as the reduced capacity of a cell to respond to LPS activation after an initial exposure to this stimulus. Using systems biology approaches in PBMCs, monocytes, and monocyte-derived macrophages involving microarrays and advanced bioinformatic analysis, we determined that gene responses during endotoxin tolerance were similar to those found during M2 polarization, featuring gene and protein expression critical for the development of key M2 MNC functions, including reduced production of proinflammatory mediators, expression of genes involved in phagocytosis, as well as tissue remodeling. Moreover, expression of different metallothionein gene isoforms, known for their role in the control of oxidative stress and in immunomodulation, were also found to be consistently upregulated during endotoxin tolerance. These results demonstrate that after an initial inflammatory stimulus, human MNCs undergo an M2 polarization probably to control hyperinflammation and heal the affected tissue.


Assuntos
Lipopolissacarídeos/farmacologia , Sistema Fagocitário Mononuclear/imunologia , Biologia Computacional , Tolerância a Medicamentos/genética , Humanos , Macrófagos , Análise em Microsséries , Monócitos , Biologia de Sistemas
9.
J Immunol ; 183(4): 2688-96, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19605696

RESUMO

The human cationic host defense peptide LL-37 has a broad range of immunomodulatory, anti-infective functions. A synthetic innate defense regulator peptide, innate defense regulator 1 (IDR-1), based conceptually on LL-37, was recently shown to selectively modulate innate immunity to protect against a wide range of bacterial infections. Using advanced proteomic techniques, ELISA, and Western blotting procedures, GAPDH was identified as a direct binding partner for LL-37 in monocytes. Enzyme kinetics and mobility shift studies also indicated LL-37 and IDR-1 binding to GAPDH. The functional relevance of GAPDH in peptide-induced responses was demonstrated by using gene silencing of GAPDH with small interfering RNA (siRNA). Previous studies have established that the induction of chemokines and the anti-inflammatory cytokine IL-10 are critical immunomodulatory functions in the anti-infective properties of LL-37 and IDR-1, and these functions are modulated by the MAPK p38 pathway. Consistent with that, this study demonstrated the importance of the GAPDH interactions with these peptides since gene silencing of GAPDH resulted in impaired p38 MAPK signaling, downstream chemokine and cytokine transcriptional responses induced by LL-37 and IDR-1, and LL-37-induced cytokine production. Bioinformatic analysis, using InnateDB, of the major interacting partners of GAPDH indicated the likelihood that this protein can impact on innate immune pathways including p38 MAPK. Thus, this study has demonstrated a novel function for GAPDH as a mononuclear cell receptor for human cathelicidin LL-37 and immunomodulatory IDR-1 and conclusively demonstrated its relevance in the functioning of cationic host defense peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Imunidade Inata , Líquido Intracelular/imunologia , Líquido Intracelular/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/antagonistas & inibidores , Peptídeos Catiônicos Antimicrobianos/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Líquido Intracelular/enzimologia , Camundongos , Dados de Sequência Molecular , Monócitos/enzimologia , RNA Interferente Pequeno/fisiologia , Catelicidinas
10.
FEMS Immunol Med Microbiol ; 56(3): 233-40, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19527294

RESUMO

The immunomodulatory cationic host defence peptide LL-37 plays an important role in epithelial innate immunity; at higher concentrations (20-50 microg mL(-1)) associated with inflammation, LL-37 elicits the production of cytokines and chemokines. It was demonstrated here that lower, physiologically relevant LL-37 concentrations (2-3 microg mL(-1)) altered epithelial cell responses to proinflammatory stimuli. In combination with interleukin-1beta (IL-1beta) and the Toll-like receptor-5 (TLR5) agonist flagellin, these low concentrations of LL-37 synergistically increased IL-8 production by both proliferating and differentiated keratinocytes and by bronchial epithelial cells. In combination with the TLR2/1 agonist PAM3CSK4, LL-37 synergistically induced transcription and the release of both IL-8 and IL-6 from primary bronchial epithelial cells; the IL-8 response was demonstrated to be regulated by epidermal growth factor receptor signalling. Treatment of bronchial epithelial cells with LL-37 and the TLR3 agonist polyI:C resulted in synergistic increases in IL-8 release and cytotoxicity. These data indicate that low concentrations of LL-37 may alter epithelial responses to infecting microorganisms in vivo.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Células Epiteliais/imunologia , Interleucina-8/biossíntese , Queratinócitos/imunologia , Células Cultivadas , Flagelina/imunologia , Humanos , Interleucina-1beta/imunologia , Interleucina-6/biossíntese , Lipopeptídeos/imunologia , Poli I-C/imunologia , Catelicidinas
11.
J Innate Immun ; 1(3): 254-67, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20375583

RESUMO

LL-37, the only member of the cathelicidin family of cationic host defence peptides in humans, has been shown to mediate multiple immunomodulatory effects and as such is thought to be an important component of innate immune responses. A growing body of evidence indicates that LL-37 affects lung mucosal responses to pathogens through altered regulation of cell migration, proliferation, wound healing and cell apoptosis. These functions are consistent with LL-37 playing a role in regulating lung epithelial inflammatory responses; however, that role has not been clearly defined. In this report we have demonstrated that host defence peptide LL-37 induced cytokine (IL-6) and chemokine (CXCL-1/GRO-alpha and CXCL-8/IL-8) release from human bronchial epithelial cells. It was demonstrated that LL-37-mediated IL-6 release was time and dose dependent and that LL-37 up-regulated this pleiotropic cytokine at the transcriptional level. Using specific inhibitors it was shown that NF-kappaB signaling led to the LL-37-stimulated production of IL-6. LL-37 stimulation of airway epithelial cells activated NF-kappaB signaling, as demonstrated by the phosphorylation and degradation of Ikappa-Balpha, and consequent nuclear translocation of p65 and p50 NF-kappaB subunits. Furthermore this host defence peptide augmented flagellin-mediated cytokine production, indicating that LL-37 likely modulates Toll-like receptor 5-mediated responses.


Assuntos
Catelicidinas/imunologia , Células Epiteliais/imunologia , Interleucina-6/metabolismo , Pulmão/imunologia , NF-kappa B/metabolismo , Peptídeos Catiônicos Antimicrobianos , Catelicidinas/metabolismo , Catelicidinas/farmacologia , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Flagelina/imunologia , Flagelina/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Transdução de Sinais
12.
Infect Immun ; 76(9): 4163-75, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18625732

RESUMO

Streptococcus salivarius is an early colonizer of human oral and nasopharyngeal epithelia, and strain K12 has reported probiotic effects. An emerging paradigm indicates that commensal bacteria downregulate immune responses through the action on NF-kappaB signaling pathways, but additional mechanisms underlying probiotic actions are not well understood. Our objective here was to identify host genes specifically targeted by K12 by comparing their responses with responses elicited by pathogens and to determine if S. salivarius modulates epithelial cell immune responses. RNA was extracted from human bronchial epithelial cells (16HBE14O- cells) cocultured with K12 or bacterial pathogens. cDNA was hybridized to a human 21K oligonucleotide-based array. Data were analyzed using ArrayPipe, InnateDB, PANTHER, and oPOSSUM. Interleukin 8 (IL-8) and growth-regulated oncogene alpha (Groalpha) secretion were determined by enzyme-linked immunosorbent assay. It was demonstrated that S. salivarius K12 specifically altered the expression of 565 host genes, particularly those involved in multiple innate defense pathways, general epithelial cell function and homeostasis, cytoskeletal remodeling, cell development and migration, and signaling pathways. It inhibited baseline IL-8 secretion and IL-8 responses to LL-37, Pseudomonas aeruginosa, and flagellin in epithelial cells and attenuated Groalpha secretion in response to flagellin. Immunosuppression was coincident with the inhibition of activation of the NF-kappaB pathway. Thus, the commensal and probiotic behaviors of S. salivarius K12 are proposed to be due to the organism (i) eliciting no proinflammatory response, (ii) stimulating an anti-inflammatory response, and (iii) modulating genes associated with adhesion to the epithelial layer and homeostasis. S. salivarius K12 might thereby ensure that it is tolerated by the host and maintained on the epithelial surface while actively protecting the host from inflammation and apoptosis induced by pathogens.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Streptococcus/imunologia , Linhagem Celular , Quimiocina CXCL1/biossíntese , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Humanos , Interleucina-8/biossíntese , Análise de Sequência com Séries de Oligonucleotídeos , Pseudomonas aeruginosa/imunologia
13.
J Immunol ; 179(11): 7684-91, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18025214

RESUMO

The human cathelicidin LL-37 is a cationic host defense peptide and serves as an important component of innate immunity. It has been demonstrated to be a multifunctional modulator of innate immune responses, although the mechanism(s) underlying this have not been well characterized. In this study, it was demonstrated that LL-37 synergistically enhanced the IL-1beta-induced production of cytokines (IL-6, IL-10) and chemokines such as macrophage chemoattractant proteins (MCP-1, MCP-3) in human PBMC, indicating a role in enhancing certain innate immune responses. Similarly, LL-37 synergistically enhanced chemokine production in the presence of GM-CSF, but IFN-gamma, IL-4, or IL-12 addition led to antagonism, indicating that the role of LL-37 in reinforcing specific immune responses is selective and restricted to particular endogenous immune mediators. The inhibition of G protein-coupled receptors and PI3K substantially suppressed the ability of IL-1beta and LL-37 to synergistically enhance the production of chemokine MCP-3. Consistent with this, the combination of IL-1beta and LL-37 enhanced the activation/phosphorylation of kinase Akt and the transcription factor CREB. The role of transcription factor NF-kappaB was revealed through the demonstration of enhanced phosphorylation of IkappaBalpha and the consequent nuclear translocation of NF-kappaB subunits p50 and p65, as well as the antagonistic effects of an inhibitor of IkappaBalpha phosphorylation. These results together indicate that the human host defense peptide LL-37 can work in synergy with the endogenous inflammatory mediator IL-1beta to enhance the induction of specific inflammatory effectors by a complex mechanism involving multiple pathways, thus reinforcing certain innate immune responses.


Assuntos
Peptídeos Catiônicos Antimicrobianos/fisiologia , Interleucina-1beta/fisiologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Quimiocina CCL7/efeitos dos fármacos , Quimiocina CCL7/genética , Quimiocina CCL7/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação , Interleucina-1beta/farmacologia , Interleucina-6/genética , Interleucina-6/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , NF-kappa B/farmacologia , NF-kappa B/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Catelicidinas
14.
J Immunol ; 176(4): 2455-64, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16456005

RESUMO

The sole human cathelicidin peptide, LL-37, has been demonstrated to protect animals against endotoxemia/sepsis. Low, physiological concentrations of LL-37 (< or =1 microg/ml) were able to modulate inflammatory responses by inhibiting the release of the proinflammatory cytokine TNF-alpha in LPS-stimulated human monocytic cells. Microarray studies established a temporal transcriptional profile and identified differentially expressed genes in LPS-stimulated monocytes in the presence or absence of LL-37. LL-37 significantly inhibited the expression of specific proinflammatory genes up-regulated by NF-kappaB in the presence of LPS, including NFkappaB1 (p105/p50) and TNF-alpha-induced protein 2 (TNFAIP2). In contrast, LL-37 did not significantly inhibit LPS-induced genes that antagonize inflammation, such as TNF-alpha-induced protein 3 (TNFAIP3) and the NF-kappaB inhibitor, NFkappaBIA, or certain chemokine genes that are classically considered proinflammatory. Nuclear translocation, in LPS-treated cells, of the NF-kappaB subunits p50 and p65 was reduced > or =50% in the presence of LL-37, demonstrating that the peptide altered gene expression in part by acting directly on the TLR-to-NF-kappaB pathway. LL-37 almost completely prevented the release of TNF-alpha and other cytokines by human PBMC following stimulation with LPS and other TLR2/4 and TLR9 agonists, but not with cytokines TNF-alpha or IL-1beta. Biochemical and inhibitor studies were consistent with a model whereby LL-37 modulated the inflammatory response to LPS/endotoxin and other agonists of TLR by a complex mechanism involving multiple points of intervention. We propose that the natural human host defense peptide LL-37 plays roles in the delicate balancing of inflammatory responses in homeostasis as well as in combating sepsis induced by certain TLR agonists.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Inflamação/imunologia , Receptores Toll-Like/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Cinética , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Subunidades Proteicas/metabolismo , Transporte Proteico , Receptores Toll-Like/imunologia , Transcrição Gênica/genética , Fator de Necrose Tumoral alfa/metabolismo , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA