Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 156: 61-74, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35907556

RESUMO

Damaged or diseased bone can be treated using autografts or a range of different bone grafting biomaterials, however limitations with such approaches has motivated increased interest in developmentally inspired bone tissue engineering (BTE) strategies that seek to recapitulate the process of endochondral ossification (EO) as a means of regenerating critically sized defects. The clinical translation of such strategies will require the engineering of scaled-up, geometrically defined hypertrophic cartilage grafts that can be rapidly vascularised and remodelled into bone in mechanically challenging defect environments. The goal of this study was to 3D bioprint mechanically reinforced cartilaginous templates and to assess their capacity to regenerate critically sized femoral bone defects. Human mesenchymal stem/stromal cells (hMSCs) were incorporated into fibrin based bioinks and bioprinted into polycaprolactone (PCL) frameworks to produce mechanically reinforced constructs. Chondrogenic priming of such hMSC laden constructs was required to support robust vascularisation and graft mineralisation in vivo following their subcutaneous implantation into nude mice. With a view towards maximising their potential to support endochondral bone regeneration, we next explored different in vitro culture regimes to produce chondrogenic and early hypertrophic engineered grafts. Following their implantation into femoral bone defects within transiently immunosuppressed rats, such bioprinted constructs were rapidly remodelled into bone in vivo, with early hypertrophic constructs supporting higher levels of vascularisation and bone formation compared to the chondrogenic constructs. Such early hypertrophic bioprinted constructs also supported higher levels of vascularisation and spatially distinct patterns of new formation compared to BMP-2 loaded collagen scaffolds (here used as a positive control). In conclusion, this study demonstrates that fibrin based bioinks support chondrogenesis of hMSCs in vitro, which enables the bioprinting of mechanically reinforced hypertrophic cartilaginous templates capable of supporting large bone defect regeneration. These results support the use of 3D bioprinting as a strategy to scale-up the engineering of developmentally inspired templates for BTE. STATEMENT OF SIGNIFICANCE: Despite the promise of developmentally inspired tissue engineering strategies for bone regeneration, there are still challenges that need to be addressed to enable clinical translation. This work reports the development and assessment (in vitro and in vivo) of a 3D bioprinting strategy to engineer mechanically-reinforced cartilaginous templates for large bone defect regeneration using human MSCs. Using distinct in vitro priming protocols, it was possible to generate cartilage grafts with altered phenotypes. More hypertrophic grafts, engineered in vitro using TGF-ß3 and BMP-2, supported higher levels of blood vessel infiltration and accelerated bone regeneration in vivo. This study also identifies some of the advantages and disadvantages of such endochondral bone TE strategies over the direct delivery of BMP-2 from collagen-based scaffolds.


Assuntos
Bioimpressão , Células-Tronco Mesenquimais , Camundongos , Ratos , Humanos , Animais , Camundongos Nus , Cartilagem , Engenharia Tecidual/métodos , Colágeno , Alicerces Teciduais , Condrogênese/genética
2.
Biomaterials ; 239: 119833, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32062479

RESUMO

Engineering a pro-regenerative immune response following scaffold implantation is integral to functional tissue regeneration. The immune response to implanted biomaterials is determined by multiple factors, including biophysical cues such as material stiffness, topography and particle size. In this study we developed an immune modulating scaffold for bone defect healing containing bone mimetic nano hydroxyapatite particles (BMnP). We first demonstrate that, in contrast to commercially available micron-sized hydroxyapatite particles, in-house generated BMnP preferentially polarize human macrophages towards an M2 phenotype, activate the transcription factor cMaf and specifically enhance production of the anti-inflammatory cytokine, IL-10. Furthermore, nano-particle treated macrophages enhance mesenchymal stem cell (MSC) osteogenesis in vitro and this occurs in an IL-10 dependent manner, demonstrating a direct pro-osteogenic role for this cytokine. BMnPs were also capable of driving pro-angiogenic responses in human macrophages and HUVECs. Characterization of immune cell subsets following incorporation of functionalized scaffolds into a rat femoral defect model revealed a similar profile, with micron-sized hydroxyapatite functionalized scaffolds eliciting pro-inflammatory responses characterized by infiltrating T cells and elevated expression of M1 macrophages markers compared to BMnP functionalized scaffolds which promoted M2 macrophage polarization, tissue vascularization and increased bone volume. Taken together these results demonstrate that nano-sized Hydroxyapatite has immunomodulatory potential and is capable of directing anti-inflammatory innate immune-mediated responses that are associated with tissue repair and regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Regeneração Óssea , Interleucina-10 , Ativação de Macrófagos , Macrófagos , Ratos , Alicerces Teciduais
3.
Biomaterials ; 188: 63-73, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321864

RESUMO

Biological scaffolds generated from tissue-derived extracellular matrix (ECM) are commonly used clinically for soft tissue regeneration. Such biomaterials can enhance tissue-specific differentiation of adult stem cells, suggesting that structuring different ECMs into multi-layered scaffolds can form the basis of new strategies for regenerating damaged interfacial tissues such as the osteochondral unit. In this study, mass spectrometry is used to demonstrate that growth plate (GP) and articular cartilage (AC) ECMs contain a unique array of regulatory proteins that may be particularly suited to bone and cartilage repair respectively. Applying a novel iterative freeze-drying method, porous bi-phasic scaffolds composed of GP ECM overlaid by AC ECM are fabricated, which are capable of spatially directing stem cell differentiation in vitro, promoting the development of graded tissues transitioning from calcified cartilage to hyaline-like cartilage. Evaluating repair 12-months post-implantation into critically-sized caprine osteochondral defects reveals that these scaffolds promote regeneration in a manner distinct to commercial control-scaffolds. The GP layer supports endochondral bone formation, while the AC layer stimulates the formation of an overlying layer of hyaline cartilage with a collagen fiber architecture better recapitulating the native tissue. These findings support the use of a bi-layered, tissue-specific ECM derived scaffolds for regenerating spatially complex musculoskeletal tissues.


Assuntos
Condrogênese , Matriz Extracelular/química , Células-Tronco Mesenquimais/citologia , Osteogênese , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Cartilagem Articular/química , Diferenciação Celular , Células Cultivadas , Cabras , Lâmina de Crescimento/química , Regeneração , Suínos , Engenharia Tecidual/métodos
4.
Biomaterials ; 162: 34-46, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29432987

RESUMO

Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge.


Assuntos
Osso e Ossos/citologia , Engenharia Tecidual/métodos , Animais , Cartilagem/citologia , Cartilagem/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , Condrogênese/fisiologia , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA