Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(35): e2301242, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37370137

RESUMO

Synthetic hydrogels often lack the load-bearing capacity and mechanical properties of native biopolymers found in tissue, such as cartilage. In natural tissues, toughness is often imparted via the combination of fibrous noncovalent self-assembly with key covalent bond formation. This controlled combination of supramolecular and covalent interactions remains difficult to engineer, yet can provide a clear strategy for advanced biomaterials. Here, a synthetic supramolecular/covalent strategy is investigated for creating a tough hydrogel that embodies the hierarchical fibrous architecture of the extracellular matrix (ECM). A benzene-1,3,5-tricarboxamide (BTA) hydrogelator is developed with synthetically addressable norbornene handles that self-assembles to form a and viscoelastic hydrogel. Inspired by collagen's covalent cross-linking of fibrils, the mechanical properties are reinforced by covalent intra- and interfiber cross-links. At over 90% water, the hydrogels withstand up to 550% tensile strain, 90% compressive strain, and dissipated energy with recoverable hysteresis. The hydrogels are shear-thinning, can be 3D bioprinted with good shape fidelity, and can be toughened via covalent cross-linking. These materials enable the bioprinting of human mesenchymal stromal cell (hMSC) spheroids and subsequent differentiation into chondrogenic tissue. Collectively, these findings highlight the power of covalent reinforcement of supramolecular fibers, offering a strategy for the bottom-up design of dynamic, yet tough, hydrogels and bioinks.


Assuntos
Bioimpressão , Hidrogéis , Humanos , Hidrogéis/química , Biomimética , Matriz Extracelular/química , Polímeros/análise , Engenharia Tecidual , Impressão Tridimensional
2.
Biofouling ; 27(10): 1139-50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22087876

RESUMO

The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.


Assuntos
Biofilmes/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis , Equipamentos e Provisões/microbiologia , Éteres , Fluorocarbonos , Polietilenoglicóis , Navios/instrumentação , Animais , Biofilmes/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Diatomáceas/efeitos dos fármacos , Diatomáceas/fisiologia , Éteres/química , Éteres/farmacologia , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Microbiológicos/efeitos dos fármacos , Maleabilidade , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Tensoativos/química , Tensoativos/farmacologia , Thoracica/efeitos dos fármacos , Thoracica/fisiologia , Ulva/efeitos dos fármacos , Ulva/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA