Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Ophthalmol ; 17: 2471-2481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637967

RESUMO

Purpose: Intraocular lens (IOL) unfurling can be a rate-limiting step in cataract surgery, limiting operative efficiency. Furthermore, inefficient unfurling has important implications for clinical outcomes. We examine the effects of solution temperature on IOL unfurling time using three in vitro models of the ocular environment. Methods: IOLs were injected into a 6-well plate filled with balanced salt solution (BSS), dispersive ophthalmic viscoelastic device (OVD), or cohesive OVD. Experiments were also performed in a plastic eye filled with dispersive or cohesive OVD. IOL unfurling time was recorded against the temperature of the respective solution. Results: IOL unfurling time decayed exponentially as solution temperature increased in all experiments, including the BSS-filled 6-well plate, the OVD-filled 6-well plate, and the OVD-filled plastic eye. IOLs failed to unfurl within 10 min at 10°C, below the glass transition temperature of the tested IOLs. Increasing solution temperature from 20°C to 30°C decreases IOL unfurling by greater than 2 min. Further heating to 40°C did not significantly decrease IOL unfurling time. Conclusion: Increased solution temperature rapidly decreases IOL unfurling time in vitro. IOLs do not unfurl within a clinically acceptable timeframe at or below their glass transition temperature. Increased BSS and/or OVD temperature may be a potential method to decrease IOL unfurling time in cataract surgery. However, future research is needed to elucidate potential consequences of warmed BSS and/or OVD on post-operative outcomes. This study demonstrates the potential for temperature regulation to decrease cataract surgery operative time and provides preliminary evidence to justify future clinical validation of this relationship.


During cataract surgery, a prosthetic intraocular lens (IOL) is inserted into the eye once the clouded lens is removed. The IOL must then unfurl before the procedure can proceed. When IOLs fail to unfurl or unfurl slowly, this can delay the operation and may even cause post-operative complications. Thus, we studied the effect temperature may have on IOL unfurling time to optimize this segment of the operation. We injected IOLs into solutions of saline (balanced salt solution) or ophthalmic viscoelastic device (OVD), two fluids injected into the eye during surgery. In both a well plate and a plastic eye, we found that increasing the temperature of the solution significantly affected IOL unfurling time. Specifically, heating the solution from refrigeration to room temperature decreased unfurling time from over 10 min to less than four. Heating to physiological temperature further decreased unfurling time to less than a minute. Our results show promise for potentially utilizing heated BSS and/or OVD to accelerate IOL unfurling and decrease cataract surgery operative time.

2.
Cell Mol Bioeng ; 14(5): 471-486, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34777605

RESUMO

INTRODUCTION: A major challenge in cancer medicine is the safe and effective delivery of drugs to the right tissue at the right time. Despite being designed for greater target specificity, many drugs still result in side effects and lack of safety in patients following global dissemination. Therefore, to develop new, more effective formulations capable of improving specificity and reducing off-target effects, here we describe formulation of drug crystals, from even a very hydrophobic and otherwise difficult to solubilize small molecule chemical compound, capable of providing constant drug release for weeks following a single injection. METHODS: We chose to utilize the multi-tyrosine kinase inhibitor and multi-modal (anti-angiogenic and tumor cell cytotoxic) agent sorafenib, to combat aberrant angiogenesis and tumor growth which contribute to metastasis, ultimately responsible for poor patient outcomes. We tuned crystal size (surface area:volume ratios), imaged by SEM, to display controllability of drug delivery kinetics in in vitro drug release assays. RESULTS: Single and powder crystal X-ray diffraction (XRD) established that all crystals were the same polymorph and drug form. When utilized against an orthotopic triple negative breast cancer (TNBC) mouse model (4T1 in syngeneic BALB/c mice), we established anti-tumor activity from a single local, subcutaneous injection of crystalline sorafenib. CONCLUSION: From our findings, we support that engineering crystalline drug delivery systems has implications in the treatment of cancer or other diseases where high enough constitutive drug levels are needed to maintain target saturation and inhibition while also preventing emergence of drug resistance, which is a consequence often seen with suboptimal dosing. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12195-021-00708-6.

3.
Adv Drug Deliv Rev ; 179: 113920, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384826

RESUMO

Metronomic chemotherapy has been shown to elicit anti-tumor immune response and block tumor angiogenesis distinct from that observed with maximal tolerated dose (MTD) therapy. This review delves into the mechanisms behind anti-tumor immunity and seeks to identify the differential effect of dosing regimens, including daily low-dose and medium-dose intermittent chemotherapy (MEDIC), on both innate and adaptive immune populations involved in observed anti-tumor immune response. Given reports of VEGF/VEGFR blockade antagonizing anti-tumor immunity, drug choice, dose, and selective delivery determined by advanced formulations/vehicles are highlighted as potential sources of innovation for identifying anti-angiogenic modalities that may be combined with metronomic regimens without interrupting key immune players in the anti-tumor response. Engineered drug delivery mechanisms that exhibit extended and local release of anti-angiogenic agents both alone and in combination with chemotherapeutic treatments have also been demonstrated to elicit a potent and potentially systemic anti-tumor immune response, favoring tumor regression and stasis over progression. This review examines this interplay between various cancer models, the host immune response, and select anti-cancer agents depending on drug dosing, scheduling/regimen, and delivery modality.


Assuntos
Administração Metronômica , Inibidores da Angiogênese/administração & dosagem , Antineoplásicos Hormonais/administração & dosagem , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/imunologia , Inibidores da Angiogênese/uso terapêutico , Antineoplásicos Hormonais/imunologia , Antineoplásicos Hormonais/uso terapêutico , Preparações de Ação Retardada , Relação Dose-Resposta a Droga , Portadores de Fármacos , Liberação Controlada de Fármacos , Humanos , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-35350430

RESUMO

Cotton balls are used in neurosurgical procedures to assist with hemostasis and improve vision within the operative field. Although the surgeon can reshape pieces of cotton for multiple intraoperative uses, this customizability and scale also places them at perpetual risk of being lost, as blood-soaked cotton balls are visually similar to raw brain tissue. Retained surgical cotton can induce potentially life-threatening immunologic responses, impair postoperative imaging, lead to a textiloma or misdiagnosis, and/or require reoperation. This study investigated three imaging modalities (optical, acoustic, and radiographic) to find the most effective method of identifying foreign bodies during neurosurgery. First, we examined the use of dyes to increase contrast between cotton and surrounding parenchyma (optical approach). Second, we explored the ability to distinguish surgical cotton on or below the tissue surface from brain parenchyma using ultrasound imaging (acoustic approach). Lastly, we analyzed the ability of radiography to differentiate between brain parenchyma and cotton. Our preliminary testing demonstrated that dark-colored cotton is significantly more identifiable than white cotton on the surface level. Additional testing revealed that cotton has noticeable different acoustic characteristics (eg, speed of sound, absorption) from neural tissue, allowing for enhanced contrast in applied ultrasound imaging. Radiography, however, did not present sufficient contrast, demanding further examination. These solutions have the potential to significantly reduce the possibility of intraoperative cotton retention both on and below the surface of the brain, while still providing surgeons with traditional cotton material properties without affecting the surgical workflow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA