Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 61(9): 878-885, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-38937076

RESUMO

BACKGROUND: Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS: We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS: Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION: This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Deficiência Intelectual , Humanos , Masculino , Feminino , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , França/epidemiologia , Criança , DNA (Citosina-5-)-Metiltransferases/genética , Pré-Escolar , Adolescente , Mutação em Linhagem Germinativa/genética , Adulto , Fenótipo , Adulto Jovem , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Lactente
2.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36720500

RESUMO

FTSJ1 is a conserved human 2'-O-methyltransferase (Nm-MTase) that modifies several tRNAs at position 32 and the wobble position 34 in the anticodon loop. Its loss of function has been linked to X-linked intellectual disability (XLID), and more recently to cancers. However, the molecular mechanisms underlying these pathologies are currently unclear. Here, we report a novel FTSJ1 pathogenic variant from an X-linked intellectual disability patient. Using blood cells derived from this patient and other affected individuals carrying FTSJ1 mutations, we performed an unbiased and comprehensive RiboMethSeq analysis to map the ribose methylation on all human tRNAs and identify novel targets. In addition, we performed a transcriptome analysis in these cells and found that several genes previously associated with intellectual disability and cancers were deregulated. We also found changes in the miRNA population that suggest potential cross-regulation of some miRNAs with these key mRNA targets. Finally, we show that differentiation of FTSJ1-depleted human neural progenitor cells into neurons displays long and thin spine neurites compared with control cells. These defects are also observed in Drosophila and are associated with long-term memory deficits. Altogether, our study adds insight into FTSJ1 pathologies in humans and flies by the identification of novel FTSJ1 targets and the defect in neuron morphology.


Assuntos
Deficiência Intelectual , Ribose , Humanos , Metilação , Deficiência Intelectual/genética , Metiltransferases/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética
3.
Clin Genet ; 102(4): 296-304, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35821609

RESUMO

DYRK1A and Wiedemann-Steiner syndromes (WSS) are two genetic conditions associated with neurodevelopmental disorders (NDDs). Although their clinical phenotype has been described, their behavioral phenotype has not systematically been studied using standardized assessment tools. To characterize the latter, we conducted a retrospective study, collecting data on developmental history, autism spectrum disorder (ASD), adaptive functioning, behavioral assessments, and sensory processing of individuals with these syndromes (n = 14;21). In addition, we analyzed information collected from families (n = 20;20) using the GenIDA database, an international patient-driven data collection aiming to better characterize natural history of genetic forms of NDDs. In the retrospective study, individuals with DYRK1A syndrome showed lower adaptive behavior scores compared to those with WSS, whose scores showed greater heterogeneity. An ASD diagnosis was established for 57% (8/14) of individuals with DYRK1A syndrome and 24% (5/21) of those with WSS. Language and communication were severely impaired in individuals with DYRK1A syndrome, which was also evident from GenIDA data, whereas in WSS patients, exploration of behavioral phenotypes revealed the importance of anxiety symptomatology and ADHD signs, also flagged in GenIDA. This study, describing the behavioral and sensorial profiles of individuals with WSS and DYRK1A syndrome, highlighted some specificities important to be considered for patients' management.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Anormalidades Múltiplas , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Anormalidades Craniofaciais , Transtornos do Crescimento , Histona-Lisina N-Metiltransferase/genética , Humanos , Hipertricose , Deficiência Intelectual , Proteína de Leucina Linfoide-Mieloide/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Estudos Retrospectivos , Síndrome
4.
Hum Mutat ; 43(9): 1299-1313, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35607920

RESUMO

Alternative splicing (AS) is crucial for cell-type-specific gene transcription and plays a critical role in neuronal differentiation and synaptic plasticity. De novo frameshift variants in NOVA2, encoding a neuron-specific key splicing factor, have been recently associated with a new neurodevelopmental disorder (NDD) with hypotonia, neurological features, and brain abnormalities. We investigated eight unrelated individuals by exome sequencing (ES) and identified seven novel pathogenic NOVA2 variants, including two with a novel localization at the KH1 and KH3 domains. In addition to a severe NDD phenotype, novel clinical features included psychomotor regression, attention deficit-hyperactivity disorder (ADHD), dyspraxia, and urogenital and endocrinological manifestations. To test the effect of the variants on splicing regulation, we transfected HeLa cells with wildtype and mutant NOVA2 complementary DNA (cDNA). The novel variants NM_002516.4:c.754_756delCTGinsTT p.(Leu252Phefs*144) and c.1329dup p.(Lys444Glnfs*82) all negatively affected AS events. The distal p.(Lys444Glnfs*82) variant, causing a partial removal of the KH3 domain, had a milder functional effect leading to an intermediate phenotype. Our findings expand the molecular and phenotypic spectrum of NOVA2-related NDD, supporting the pathogenic role of AS disruption by truncating variants and suggesting that this is a heterogeneous condition with variable clinical course.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Processamento Alternativo , Células HeLa , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Proteínas do Tecido Nervoso/genética , Antígeno Neuro-Oncológico Ventral , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas de Ligação a RNA/genética
5.
Genet Med ; 24(6): 1227-1237, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35300924

RESUMO

PURPOSE: This study aimed to describe the phenotypic and molecular characteristics of ARCN1-related syndrome. METHODS: Patients with ARCN1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. RESULTS: In total, we identified 14 cases of ARCN1-related syndrome, (9 pediatrics, and 5 fetal cases from 3 families). The clinical features these newly identified cases were compared to 6 previously reported cases for a total of 20 cases. Intrauterine growth restriction, micrognathia, and short stature were present in all patients. Other common features included prematurity (11/15, 73.3%), developmental delay (10/14, 71.4%), genitourinary malformations in males (6/8, 75%), and microcephaly (12/15, 80%). Novel features of ARCN1-related syndrome included transient liver dysfunction and specific glycosylation abnormalities during illness, giant cell hepatitis, hepatoblastoma, cataracts, and lethal skeletal manifestations. Developmental delay was seen in 73% of patients, but only 3 patients had intellectual disability, which is less common than previously reported. CONCLUSION: ARCN1-related syndrome presents with a wide clinical spectrum ranging from a severe embryonic lethal syndrome to a mild syndrome with intrauterine growth restriction, micrognathia, and short stature without intellectual disability. Patients with ARCN1-related syndrome should be monitored for liver dysfunction during illness, cataracts, and hepatoblastoma. Additional research to further define the phenotypic spectrum and possible genotype-phenotype correlations are required.


Assuntos
Catarata , Nanismo , Hepatoblastoma , Deficiência Intelectual , Neoplasias Hepáticas , Micrognatismo , Criança , Feminino , Retardo do Crescimento Fetal/genética , Humanos , Deficiência Intelectual/genética , Masculino , Fenótipo , Síndrome
6.
J Med Genet ; 59(5): 505-510, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811134

RESUMO

De novo missense variants in KCNH1 encoding Kv10.1 are responsible for two clinically recognisable phenotypes: Temple-Baraitser syndrome (TBS) and Zimmermann-Laband syndrome (ZLS). The clinical overlap between these two syndromes suggests that they belong to a spectrum of KCNH1-related encephalopathies. Affected patients have severe intellectual disability (ID) with or without epilepsy, hypertrichosis and distinctive features such as gingival hyperplasia and nail hypoplasia/aplasia (present in 20/23 reported cases).We report a series of seven patients with ID and de novo pathogenic KCNH1 variants identified by whole-exome sequencing or an epilepsy gene panel in whom the diagnosis of TBS/ZLS had not been first considered. Four of these variants, p.(Thr294Met), p.(Ala492Asp), p.(Thr493Asn) and p.(Gly496Arg), were located in the transmembrane domains S3 and S6 of Kv10.1 and one, p.(Arg693Gln), in its C-terminal cyclic nucleotide-binding homology domain (CNBHD). Clinical reappraisal by the referring clinical geneticists confirmed the absence of the distinctive gingival and nail features of TBS/ZLS.Our study expands the phenotypical spectrum of KCNH1-related encephalopathies to individuals with an attenuated extraneurological phenotype preventing a clinical diagnosis of TBS or ZLS. This subtype may be related to recurrent substitutions of the Gly496, suggesting a genotype-phenotype correlation and, possibly, to variants in the CNBHD domain.


Assuntos
Epilepsia , Deficiência Intelectual , Anormalidades Múltiplas , Anormalidades Craniofaciais , Epilepsia/diagnóstico , Epilepsia/genética , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Fibromatose Gengival , Hallux/anormalidades , Deformidades Congênitas da Mão , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Unhas Malformadas , Fenótipo , Polegar/anormalidades
7.
Clin Genet ; 99(5): 732-739, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33506510

RESUMO

Skraban-Deardorff syndrome (a disease related to variations in the WDR26 gene; OMIM #617616) was first described in a cohort of 15 individuals in 2017. The syndrome comprises intellectual deficiency, severe speech impairment, ataxic gait, seizures, mild hypotonia with feeding difficulties during infancy, and dysmorphic features. Here, we report on six novel heterozygous de novo pathogenic variants in WDR26 in six probands. The patients' phenotypes were consistent with original publication. One patient displayed marked hypotonia with an abnormal muscle biopsy; this finding warrants further investigation. Gait must be closely monitored, in order to highlight any musculoskeletal or neurological abnormalities and prompt further examinations. Speech therapy and alternative communication methods should be initiated early in the clinical follow-up, in order to improve language and oral eating and drinking.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Deficiências do Desenvolvimento/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Fenótipo , Síndrome , Adulto Jovem
8.
Am J Hum Genet ; 106(4): 438-452, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32197073

RESUMO

The neuro-oncological ventral antigen 2 (NOVA2) protein is a major factor regulating neuron-specific alternative splicing (AS), previously associated with an acquired neurologic condition, the paraneoplastic opsoclonus-myoclonus ataxia (POMA). We report here six individuals with de novo frameshift variants in NOVA2 affected with a severe neurodevelopmental disorder characterized by intellectual disability (ID), motor and speech delay, autistic features, hypotonia, feeding difficulties, spasticity or ataxic gait, and abnormal brain MRI. The six variants lead to the same reading frame, adding a common proline rich C-terminal part instead of the last KH RNA binding domain. We detected 41 genes differentially spliced after NOVA2 downregulation in human neural cells. The NOVA2 variant protein shows decreased ability to bind target RNA sequences and to regulate target AS events. It also fails to complement the effect on neurite outgrowth induced by NOVA2 downregulation in vitro and to rescue alterations of retinotectal axonal pathfinding induced by loss of NOVA2 ortholog in zebrafish. Our results suggest a partial loss-of-function mechanism rather than a full heterozygous loss-of-function, although a specific contribution of the novel C-terminal extension cannot be excluded.


Assuntos
Mutação da Fase de Leitura/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Neurônios/fisiologia , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo/genética , Animais , Orientação de Axônios/genética , Sequência de Bases/genética , Células Cultivadas , Pré-Escolar , Regulação para Baixo/genética , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Camundongos , Hipotonia Muscular/genética , Antígeno Neuro-Oncológico Ventral , Peixe-Zebra/genética
9.
Eur J Hum Genet ; 28(6): 770-782, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32005960

RESUMO

TBR1, a T-box transcription factor expressed in the cerebral cortex, regulates the expression of several candidate genes for autism spectrum disorders (ASD). Although TBR1 has been reported as a high-confidence risk gene for ASD and intellectual disability (ID) in functional and clinical reports since 2011, TBR1 has only recently been recorded as a human disease gene in the OMIM database. Currently, the neurodevelopmental disorders and structural brain anomalies associated with TBR1 variants are not well characterized. Through international data sharing, we collected data from 25 unreported individuals and compared them with data from the literature. We evaluated structural brain anomalies in seven individuals by analysis of MRI images, and compared these with anomalies observed in TBR1 mutant mice. The phenotype included ID in all individuals, associated to autistic traits in 76% of them. No recognizable facial phenotype could be identified. MRI analysis revealed a reduction of the anterior commissure and suggested new features including dysplastic hippocampus and subtle neocortical dysgenesis. This report supports the role of TBR1 in ID associated with autistic traits and suggests new structural brain malformations in humans. We hope this work will help geneticists to interpret TBR1 variants and diagnose ASD probands.


Assuntos
Transtorno Autístico/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Fenótipo , Proteínas com Domínio T/genética , Adolescente , Adulto , Animais , Transtorno Autístico/patologia , Criança , Pré-Escolar , Cognição , Anormalidades Craniofaciais/patologia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Deficiência Intelectual/patologia , Masculino , Camundongos , Mutação , Neocórtex/diagnóstico por imagem , Neocórtex/patologia , Síndrome , Proteínas com Domínio T/metabolismo
10.
Eur J Hum Genet ; 28(8): 1044-1055, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32071410

RESUMO

Primrose syndrome is characterized by variable intellectual deficiency, behavior disorders, facial features with macrocephaly, and a progressive phenotype with hearing loss and ectopic calcifications, distal muscle wasting, and contractures. In 2014, ZBTB20 variants were identified as responsible for this syndrome. Indeed, ZBTB20 plays an important role in cognition, memory, learning processes, and has a transcription repressive effect on numerous genes. A more severe phenotype was discussed in patients with missense single nucleotide variants than in those with large deletions. Here, we report on the clinical and molecular results of 14 patients: 6 carrying ZBTB20 missense SNVs, 1 carrying an early truncating indel, and 7 carrying 3q13.31 deletions, recruited through the AnDDI-Rares network. We compared their phenotypes and reviewed the data of the literature, in order to establish more powerful phenotype-genotype correlations. All 57 patients presented mild-to-severe ID and/or a psychomotor delay. Facial features were similar with macrocephaly, prominent forehead, downslanting palpebral fissures, ptosis, and large ears. Hearing loss was far more frequent in patients with missense SNVs (p = 0.002), ectopic calcification, progressive muscular wasting, and contractures were observed only in patients with missense SNVs (p nonsignificant). Corpus callosum dysgenesis (p = 0.00004), hypothyroidism (p = 0.047), and diabetes were also more frequent in this group. However, the median age was 9.4 years in patients with deletions and truncating variant compared with 15.1 years in those with missense SNVs. Longer follow-up will be necessary to determine whether the phenotype of patients with deletions is also progressive.


Assuntos
Anormalidades Múltiplas/genética , Calcinose/genética , Otopatias/genética , Deficiência Intelectual/genética , Atrofia Muscular/genética , Proteínas do Tecido Nervoso/genética , Fenótipo , Fatores de Transcrição/genética , Anormalidades Múltiplas/patologia , Adolescente , Calcinose/patologia , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Corpo Caloso/diagnóstico por imagem , Otopatias/patologia , Humanos , Deficiência Intelectual/patologia , Atrofia Muscular/patologia , Mutação de Sentido Incorreto
11.
Hum Mutat ; 41(1): 240-254, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31549751

RESUMO

Polydactyly is one of the most frequent inherited defects of the limbs characterized by supernumerary digits and high-genetic heterogeneity. Among the many genes involved, either in isolated or syndromic forms, eight have been implicated in postaxial polydactyly (PAP). Among those, IQCE has been recently identified in a single consanguineous family. Using whole-exome sequencing in patients with uncharacterized ciliopathies, including PAP, we identified three families with biallelic pathogenic variations in IQCE. Interestingly, the c.895_904del (p.Val301Serfs*8) was found in all families without sharing a common haplotype, suggesting a recurrent mechanism. Moreover, in two families, the systemic phenotype could be explained by additional pathogenic variants in known genes (TULP1, ATP6V1B1). RNA expression analysis on patients' fibroblasts confirms that the dysfunction of IQCE leads to the dysregulation of genes associated with the hedgehog-signaling pathway, and zebrafish experiments demonstrate a full spectrum of phenotypes linked to defective cilia: Body curvature, kidney cysts, left-right asymmetry, misdirected cilia in the pronephric duct, and retinal defects. In conclusion, we identified three additional families confirming IQCE as a nonsyndromic PAP gene. Our data emphasize the importance of taking into account the complete set of variations of each individual, as each clinical presentation could finally be explained by multiple genes.


Assuntos
Ciliopatias/diagnóstico , Ciliopatias/genética , Dedos/anormalidades , Predisposição Genética para Doença , Variação Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Fenótipo , Polidactilia/diagnóstico , Polidactilia/genética , Dedos do Pé/anormalidades , Animais , Consanguinidade , Imunofluorescência , Perfilação da Expressão Gênica , Estudos de Associação Genética/métodos , Homozigoto , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Linhagem , Transdução de Sinais , Transcriptoma , Sequenciamento do Exoma , Peixe-Zebra
12.
Mol Psychiatry ; 25(9): 2175-2188, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-30104728

RESUMO

Early-onset neurodevelopmental conditions (e.g., autism) affect males more frequently than females. Androgens may play a role in this male-bias by sex-differentially impacting early prenatal brain development, particularly neural circuits that later develop specialized roles in social cognition. Here, we find that increasing prenatal testosterone in humans is associated with later reduction of functional connectivity between social brain default mode (DMN) subsystems in adolescent males, but has no effect in females. Since testosterone can work directly via the androgen receptor (AR) or indirectly via the estrogen receptor through aromatase conversion to estradiol, we further examined how a potent non-aromatizable androgen, dihydrotestosterone (DHT), acts via the AR to influence gene expression in human neural stem cells (hNSC)-particularly for genes of high-relevance for DMN circuitry. DHT dysregulates a number of genes enriched for syndromic causes of autism and intellectual disability and for genes that in later development are expressed in anatomical patterns that highly correspond to the cortical midline DMN subsystem. DMN-related and DHT-affected genes (e.g., MEF2C) are involved in a number of synaptic processes, many of which impact excitation-inhibition balance. Androgens have male-specific prenatal influence over social brain circuitry in humans and may be relevant towards explaining some component of male-bias in early-onset neurodevelopmental conditions.


Assuntos
Androgênios , Di-Hidrotestosterona , Adolescente , Encéfalo , Estradiol , Feminino , Humanos , Masculino , Testosterona
13.
Am J Hum Genet ; 105(3): 509-525, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422817

RESUMO

The human RNA helicase DDX6 is an essential component of membrane-less organelles called processing bodies (PBs). PBs are involved in mRNA metabolic processes including translational repression via coordinated storage of mRNAs. Previous studies in human cell lines have implicated altered DDX6 in molecular and cellular dysfunction, but clinical consequences and pathogenesis in humans have yet to be described. Here, we report the identification of five rare de novo missense variants in DDX6 in probands presenting with intellectual disability, developmental delay, and similar dysmorphic features including telecanthus, epicanthus, arched eyebrows, and low-set ears. All five missense variants (p.His372Arg, p.Arg373Gln, p.Cys390Arg, p.Thr391Ile, and p.Thr391Pro) are located in two conserved motifs of the RecA-2 domain of DDX6 involved in RNA binding, helicase activity, and protein-partner binding. We use functional studies to demonstrate that the first variants identified (p.Arg373Gln and p.Cys390Arg) cause significant defects in PB assembly in primary fibroblast and model human cell lines. These variants' interactions with several protein partners were also disrupted in immunoprecipitation assays. Further investigation via complementation assays included the additional variants p.Thr391Ile and p.Thr391Pro, both of which, similarly to p.Arg373Gln and p.Cys390Arg, demonstrated significant defects in P-body assembly. Complementing these molecular findings, modeling of the variants on solved protein structures showed distinct spatial clustering near known protein binding regions. Collectively, our clinical and molecular data describe a neurodevelopmental syndrome associated with pathogenic missense variants in DDX6. Additionally, we suggest DDX6 join the DExD/H-box genes DDX3X and DHX30 in an emerging class of neurodevelopmental disorders involving RNA helicases.


Assuntos
RNA Helicases DEAD-box/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas/genética , RNA/genética , Humanos
14.
Biol Psychiatry ; 84(4): 239-252, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29428674

RESUMO

BACKGROUND: Prenatal exposure to androgens during brain development in male individuals may participate to increase their susceptibility to develop neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability. However, little is known about the action of androgens in human neural cells. METHODS: We used human neural stem cells differentiated from embryonic stem cells to investigate targets of androgens. RESULTS: RNA sequencing revealed that treatment with dihydrotestosterone (DHT) leads to subtle but significant changes in the expression of about 200 genes, encoding proteins of extracellular matrix or involved in signal transduction of growth factors (e.g., insulin/insulin growth factor 1). We showed that the most differentially expressed genes (DEGs), RGCC, RNF144B, NRCAM, TRIM22, FAM107A, IGFBP5, and LAMA2, are reproducibly regulated by different androgens in different genetic backgrounds. We showed, by overexpressing the androgen receptor in neuroblastoma cells SH-SY5Y or knocking it down in human neural stem cells, that this regulation involves the androgen receptor. A chromatin immunoprecipitation combined with direct sequencing analysis identified androgen receptor-bound sequences in nearly half of the DHT-DEGs and in numerous other genes. DHT-DEGs appear enriched in genes involved in ASD (ASXL3, NLGN4X, etc.), associated with ASD (NRCAM), or differentially expressed in patients with ASD (FAM107A, IGFBP5). Androgens increase human neural stem cell proliferation and survival in nutrient-deprived culture conditions, with no detectable effect on regulation of neurite outgrowth. CONCLUSIONS: We characterized androgen action in neural progenitor cells, identifying DHT-DEGs that appear to be enriched in genes related to ASD. We also showed that androgens increase proliferation of neuronal precursors and protect them from death during their differentiation in nutrient-deprived conditions.


Assuntos
Androgênios/farmacologia , Transtorno do Espectro Autista/genética , Di-Hidrotestosterona/farmacologia , Expressão Gênica/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Transtorno do Espectro Autista/etiologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Masculino , Células-Tronco Neurais/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Análise de Sequência de RNA , Fatores Sexuais
15.
Nat Genet ; 49(4): 511-514, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250454

RESUMO

Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual.


Assuntos
Agenesia do Corpo Caloso/genética , Deficiências do Desenvolvimento/genética , Mutação/genética , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética , Anormalidades Múltiplas/genética , Encéfalo/patologia , Corpo Caloso/patologia , Receptor DCC , Família , Feminino , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Células-Tronco Neurais/patologia , Penetrância , Fenótipo
16.
Am J Med Genet A ; 170(6): 1626-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27061120

RESUMO

The cardinal features of Primrose syndrome (MIM 259050) are dysmorphic facial features, macrocephaly, and intellectual disability, as well as large body size, height and weight, and calcified pinnae. A variety of neurological signs and symptoms have been reported including hearing loss, autism, behavioral abormalities, hypotonia, cerebral calcifications, and hypoplasia of the corpus callosum. Recently, heterozygous de novo missense mutations in ZBTB20, coding for a zing finger protein, have been identified in Primrose syndrome patients. We report a boy with intellectual disability carrying two de novo missense mutations in the last exon of ZBTB20 (Ser616Phe and Gly741Arg; both previously unreported). One of them, Ser616Phe, affects an amino acid located in one of the C2H2 zing-fingers involved in DNA-binding and close to other missense mutations already described. Reverse phenotyping showed that this patient presents with classic features of Primrose syndrome (dysmorphic facies, macrocephaly, hearing loss, hypotonia, hypoplasia of the corpus callosum) and, in addition, congenital hypothyroidism. Review of the literature reveals another Primrose syndrome patient with hypothyroidism and thus, this may represent an under recognized component that should be investigated in other patients. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Calcinose/diagnóstico , Calcinose/genética , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Otopatias/diagnóstico , Otopatias/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Atrofia Muscular/diagnóstico , Atrofia Muscular/genética , Mutação , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Biomarcadores , Hibridização Genômica Comparativa , Fácies , Estudos de Associação Genética , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Linhagem , Fenótipo
17.
Toxicol In Vitro ; 24(2): 452-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19833192

RESUMO

Oltipraz, a synthetic derivative of the cruciferous vegetable product 1,2-dithiole-3-thione, is considered as a potent chemoprotectant. Previously, we have demonstrated that CYP2B6 expression is induced in cultured human hepatocytes by a 24h treatment with oltipraz. The aim of this study was to further determine mechanisms involved in the regulation of CYP2B6 by this compound. An increase of CYP2B6 mRNA is observed after a 4h exposure and maximum induction is reached after 24h. The rapid induction of CYP2B6 mRNA in oltipraz-treated cells suggests a transcriptional activation of corresponding gene. To test this hypothesis, we performed transient transfections with constructs containing the CYP2B6 gene 5'-flanking region upstream of the luciferase gene in order to measure the transcriptional activity of CYP2B6 gene in human hepatoma HepG2 cells, in absence or presence of oltipraz. The results demonstrate that transcriptional activation of CYP2B6 gene is mediated mainly by the pregnane X receptor (PXR) and the Phenobarbital Responsive Element Module (PBREM). The nuclear factor-erythroid 2-related factor 2 (Nrf2) and an antioxidant responsive element (ARE), located upstream the PBREM, might also have a role in this activation but their involvement remains unclear. Despite increasing CYP2B6 apoprotein levels in human hepatocytes, oltipraz has little effect, if any, on testosterone 16beta-hydroxylation which is catalyzed by CYP2B6. This can be explained by a dose-dependent inhibition of CYP2B6 activity in presence of oltipraz as demonstrated with human hepatocyte microsomes. Altogether, this study provides the first demonstration of PXR involvement in oltipraz transcriptional activation of CYP2B6 gene and of the inhibitory effect of oltipraz on CYP2B6 activity.


Assuntos
Anticarcinógenos/farmacologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Pirazinas/farmacologia , Receptores de Esteroides/metabolismo , Hidrocarboneto de Aril Hidroxilases/genética , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Citocromo P-450 CYP2B6 , Regulação da Expressão Gênica , Humanos , Hidroxilação , Neoplasias Hepáticas , Oxirredutases N-Desmetilantes/genética , Receptor de Pregnano X , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Esteroides/genética , Testosterona/metabolismo , Tionas , Tiofenos
18.
Drug Metab Dispos ; 34(1): 75-83, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16204462

RESUMO

Most human hepatocyte cell lines lack a substantial set of liver-specific functions, especially major cytochrome P450 (P450)-related enzyme activities, making them unrepresentative of in vivo hepatocytes. We have used the HepaRG cells, derived from a human hepatocellular carcinoma, which exhibit a high differentiation pattern after 2 weeks at confluency to determine whether they could mimic human hepatocytes for drug metabolism and toxicity studies. We show that when passaged at low density, these cells reversed to an undifferentiated morphology, actively divided, and, after having reached confluency, formed typical hepatocyte-like colonies surrounded by biliary epithelial-like cells. By contrast, when seeded at high density, hepatocyte-like clusters retained their typical differentiated morphology. Transcripts of various nuclear receptors (aryl hydrocarbon receptor, pregnane X receptor, constitutive androstane receptor, peroxisome proliferator-activated receptor alpha), P450s (CYP1A2, 2C9, 2D6, 2E1, 3A4), phase 2 enzymes (UGT1A1, GSTA1, GSTA4, GSTM1), and other liver-specific functions were estimated by reverse transcriptase-quantitative polymerase chain reaction and were found to be expressed, for most of them, at comparable levels in both confluent differentiated and high-density differentiated HepaRG cells and in cultured primary human hepatocytes. For several transcripts, the levels were strongly increased in the presence of 2% dimethyl sulfoxide. Measurement of basal activities of several P450s and their response to prototypical inducers as well as analysis of metabolic profiles and cytotoxicity of several compounds confirmed the functional resemblance of HepaRG cells to primary cultured human hepatocytes. In conclusion, HepaRG cells constitute the first human hepatoma cell line expressing high levels of the major P450s involved in xenobiotic metabolism and represent a reliable surrogate to human hepatocytes for drug metabolism and toxicity studies.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Glucuronosiltransferase/genética , Receptores Citoplasmáticos e Nucleares/genética , Acetaminofen/farmacologia , Aflatoxina B1/farmacologia , Amiodarona/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorpromazina/farmacologia , Dimetil Sulfóxido/farmacologia , Expressão Gênica/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Isoenzimas/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Xenobióticos/farmacologia
19.
Carcinogenesis ; 26(2): 343-51, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15498785

RESUMO

Numerous chemical compounds are cytotoxic or carcinogenic to human beings and attention is now focusing on preventative strategies. One agent, oltipraz (OPZ), regarded as one of the most promising chemoprotectors, has been shown to be a potent inducer of phase II enzymes involved in the detoxification of carcinogens, including aflatoxins. However, little is known about its effects on global gene expression in human cells. Thus, we used microarrays and reverse transcription-quantitative polymerase chain reaction to test the effects of OPZ on the overall pattern of mRNA expression of multiple metabolic pathways in human hepatocytes in primary culture. Our results show for the first time that OPZ significantly alters the expression of human genes within different functional categories (detoxification of xenobiotics, antioxidant defences, xenobiotic transport, cell cycle and stress responses), at both the mRNA and protein levels, some of which are highly relevant to chemoprevention. Amongst these genes, several have never been described as being regulated by OPZ before. We also demonstrate variations in response to OPZ, depending on the individual from whom the cells were derived, that might potentially contribute to differences in efficacy of chemopreventive treatments between individuals. Moreover, comparison of our results with those obtained in rodents demonstrates species differences in response to OPZ for some genes, underlying the importance of studies on human cells to predict the effects of chemopreventive agents.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Hepatócitos/metabolismo , Pirazinas/farmacologia , RNA Mensageiro/metabolismo , Anticarcinógenos/farmacologia , Quimioprevenção/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , RNA Mensageiro/efeitos dos fármacos , Tionas , Tiofenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA