Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(2): e1011252, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38363799

RESUMO

Tumour angiogenesis leads to the formation of blood vessels that are structurally and spatially heterogeneous. Poor blood perfusion, in conjunction with increased hypoxia and oxygen heterogeneity, impairs a tumour's response to radiotherapy. The optimal strategy for enhancing tumour perfusion remains unclear, preventing its regular deployment in combination therapies. In this work, we first identify vascular architectural features that correlate with enhanced perfusion following radiotherapy, using in vivo imaging data from vascular tumours. Then, we present a novel computational model to determine the relationship between these architectural features and blood perfusion in silico. If perfusion is defined to be the proportion of vessels that support blood flow, we find that vascular networks with small mean diameters and large numbers of angiogenic sprouts show the largest increases in perfusion post-irradiation for both biological and synthetic tumours. We also identify cases where perfusion increases due to the pruning of hypoperfused vessels, rather than blood being rerouted. These results indicate the importance of considering network composition when determining the optimal irradiation strategy. In the future, we aim to use our findings to identify tumours that are good candidates for perfusion enhancement and to improve the efficacy of combination therapies.


Assuntos
Hipóxia , Neoplasias , Humanos , Perfusão , Terapia Combinada , Oxigênio , Neoplasias/radioterapia
2.
Biophys J ; 123(7): 799-813, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38414238

RESUMO

Interstitial fluid flow is a feature of many solid tumors. In vitro experiments have shown that such fluid flow can direct tumor cell movement upstream or downstream depending on the balance between the competing mechanisms of tensotaxis (cell migration up stress gradients) and autologous chemotaxis (downstream cell movement in response to flow-induced gradients of self-secreted chemoattractants). In this work we develop a probabilistic-continuum, two-phase model for cell migration in response to interstitial flow. We use a kinetic description for the cell velocity probability density function, and model the flow-dependent mechanical and chemical stimuli as forcing terms that bias cell migration upstream and downstream. Using velocity-space averaging, we reformulate the model as a system of continuum equations for the spatiotemporal evolution of the cell volume fraction and flux in response to forcing terms that depend on the local direction and magnitude of the mechanochemical cues. We specialize our model to describe a one-dimensional cell layer subject to fluid flow. Using a combination of numerical simulations and asymptotic analysis, we delineate the parameter regime where transitions from downstream to upstream cell migration occur. As has been observed experimentally, the model predicts downstream-oriented chemotactic migration at low cell volume fractions, and upstream-oriented tensotactic migration at larger volume fractions. We show that the locus of the critical volume fraction, at which the system transitions from downstream to upstream migration, is dominated by the ratio of the rate of chemokine secretion and advection. Our model also predicts that, because the tensotactic stimulus depends strongly on the cell volume fraction, upstream, tensotaxis-dominated migration occurs only transiently when the cells are initially seeded, and transitions to downstream, chemotaxis-dominated migration occur at later times due to the dispersive effect of cell diffusion.


Assuntos
Quimiotaxia , Neoplasias , Humanos , Movimento Celular/fisiologia , Difusão , Modelos Biológicos
3.
J Theor Biol ; 545: 111104, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35337794

RESUMO

New experimental data have shown how the periodic exposure of cells to low oxygen levels (i.e., cyclic hypoxia) impacts their progress through the cell-cycle. Cyclic hypoxia has been detected in tumours and linked to poor prognosis and treatment failure. While fluctuating oxygen environments can be reproduced in vitro, the range of oxygen cycles that can be tested is limited. By contrast, mathematical models can be used to predict the response to a wide range of cyclic dynamics. Accordingly, in this paper we develop a mechanistic model of the cell-cycle that can be combined with in vitro experiments to better understand the link between cyclic hypoxia and cell-cycle dysregulation. A distinguishing feature of our model is the inclusion of impaired DNA synthesis and cell-cycle arrest due to periodic exposure to severely low oxygen levels. Our model decomposes the cell population into five compartments and a time-dependent delay accounts for the variability in the duration of the S phase which increases in severe hypoxia due to reduced rates of DNA synthesis. We calibrate our model against experimental data and show that it recapitulates the observed cell-cycle dynamics. We use the calibrated model to investigate the response of cells to oxygen cycles not yet tested experimentally. When the re-oxygenation phase is sufficiently long, our model predicts that cyclic hypoxia simply slows cell proliferation since cells spend more time in the S phase. On the contrary, cycles with short periods of re-oxygenation are predicted to lead to inhibition of proliferation, with cells arresting from the cell-cycle in the G2 phase. While model predictions on short time scales (about a day) are fairly accurate (i.e, confidence intervals are small), the predictions become more uncertain over longer periods. Hence, we use our model to inform experimental design that can lead to improved model parameter estimates and validate model predictions.


Assuntos
Hipóxia , Oxigênio , Hipóxia Celular/fisiologia , DNA/metabolismo , Humanos , Modelos Teóricos , Oxigênio/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(45): 27811-27819, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33109723

RESUMO

Oxygen heterogeneity in solid tumors is recognized as a limiting factor for therapeutic efficacy. This heterogeneity arises from the abnormal vascular structure of the tumor, but the precise mechanisms linking abnormal structure and compromised oxygen transport are only partially understood. In this paper, we investigate the role that red blood cell (RBC) transport plays in establishing oxygen heterogeneity in tumor tissue. We focus on heterogeneity driven by network effects, which are challenging to observe experimentally due to the reduced fields of view typically considered. Motivated by our findings of abnormal vascular patterns linked to deviations from current RBC transport theory, we calculated average vessel lengths [Formula: see text] and diameters [Formula: see text] from tumor allografts of three cancer cell lines and observed a substantial reduction in the ratio [Formula: see text] compared to physiological conditions. Mathematical modeling reveals that small values of the ratio λ (i.e., [Formula: see text]) can bias hematocrit distribution in tumor vascular networks and drive heterogeneous oxygenation of tumor tissue. Finally, we show an increase in the value of λ in tumor vascular networks following treatment with the antiangiogenic cancer agent DC101. Based on our findings, we propose λ as an effective way of monitoring the efficacy of antiangiogenic agents and as a proxy measure of perfusion and oxygenation in tumor tissue undergoing antiangiogenic treatment.


Assuntos
Circulação Sanguínea/fisiologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Inibidores da Angiogênese/uso terapêutico , Animais , Biomarcadores Tumorais/fisiologia , Linhagem Celular Tumoral , Eritrócitos/metabolismo , Heterogeneidade Genética , Hematócrito , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Modelos Teóricos , Neoplasias/tratamento farmacológico , Oxigênio/metabolismo , Perfusão
5.
J Open Source Softw ; 5(47): 1848, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37192932

RESUMO

Chaste (Cancer, Heart And Soft Tissue Environment) is an open source simulation package for the numerical solution of mathematical models arising in physiology and biology. To date, Chaste development has been driven primarily by applications that include continuum modelling of cardiac electrophysiology ('Cardiac Chaste'), discrete cell-based modelling of soft tissues ('Cell-based Chaste'), and modelling of ventilation in lungs ('Lung Chaste'). Cardiac Chaste addresses the need for a high-performance, generic, and verified simulation framework for cardiac electrophysiology that is freely available to the scientific community. Cardiac chaste provides a software package capable of realistic heart simulations that is efficient, rigorously tested, and runs on HPC platforms. Cell-based Chaste addresses the need for efficient and verified implementations of cell-based modelling frameworks, providing a set of extensible tools for simulating biological tissues. Computational modelling, along with live imaging techniques, plays an important role in understanding the processes of tissue growth and repair. A wide range of cell-based modelling frameworks have been developed that have each been successfully applied in a range of biological applications. Cell-based Chaste includes implementations of the cellular automaton model, the cellular Potts model, cell-centre models with cell representations as overlapping spheres or Voronoi tessellations, and the vertex model. Lung Chaste addresses the need for a novel, generic and efficient lung modelling software package that is both tested and verified. It aims to couple biophysically-detailed models of airway mechanics with organ-scale ventilation models in a package that is freely available to the scientific community. Chaste is designed to be modular and extensible, providing libraries for common scientific computing infrastructure such as linear algebra operations, finite element meshes, and ordinary and partial differential equation solvers. This infrastructure is used by libraries for specific applications, such as continuum mechanics, cardiac models, and cell-based models. The software engineering techniques used to develop Chaste are intended to ensure code quality, re-usability and reliability. Primary applications of the software include cardiac and respiratory physiology, cancer and developmental biology.

6.
PLoS Comput Biol ; 14(3): e1006049, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29522527

RESUMO

The corneal micropocket angiogenesis assay is an experimental protocol for studying vessel network formation, or neovascularization, in vivo. The assay is attractive due to the ease with which the developing vessel network can be observed in the same animal over time. Measurements from the assay have been used in combination with mathematical modeling to gain insights into the mechanisms of angiogenesis. While previous modeling studies have adopted planar domains to represent the assay, the hemispherical shape of the cornea and asymmetric positioning of the angiogenic source can be seen to affect vascular patterning in experimental images. As such, we aim to better understand: i) how the geometry of the assay influences vessel network formation and ii) how to relate observations from planar domains to those in the hemispherical cornea. To do so, we develop a three-dimensional, off-lattice mathematical model of neovascularization in the cornea, using a spatially resolved representation of the assay for the first time. Relative to the detailed model, we predict that the adoption of planar geometries has a noticeable impact on vascular patterning, leading to increased vessel 'merging', or anastomosis, in particular when circular geometries are adopted. Significant differences in the dynamics of diffusible aniogenesis simulators are also predicted between different domains. In terms of comparing predictions across domains, the 'distance of the vascular front to the limbus' metric is found to have low sensitivity to domain choice, while metrics such as densities of tip cells and vessels and 'vascularized fraction' are sensitive to domain choice. Given the widespread adoption and attractive simplicity of planar tissue domains, both in silico and in vitro, the differences identified in the present study should prove useful in relating the results of previous and future theoretical studies of neovascularization to in vivo observations in the cornea.


Assuntos
Neovascularização da Córnea/classificação , Neovascularização da Córnea/patologia , Animais , Bioensaio/métodos , Simulação por Computador , Córnea/patologia , Modelos de Interação Espacial , Modelos Teóricos , Simulação de Dinâmica Molecular , Neovascularização Patológica/patologia , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
7.
Biophys J ; 112(9): 1767-1772, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28494948

RESUMO

Spatial models of vascularized tissues are widely used in computational physiology. We introduce a software library for composing multiscale, multiphysics models for applications including tumor growth, angiogenesis, osteogenesis, coronary perfusion, and oxygen delivery. Composition of such models is time consuming, with many researchers writing custom software. Recent advances in imaging have produced detailed three-dimensional (3D) datasets of vascularized tissues at the scale of individual cells. To fully exploit such data there is an increasing need for software that allows user-friendly composition of efficient, 3D models of vascularized tissues, and comparison of predictions with in vivo or in vitro experiments and alternative computational formulations. Microvessel Chaste can be used to build simulations of vessel growth and adaptation in response to mechanical and chemical stimuli; intra- and extravascular transport of nutrients, growth factors and drugs; and cell proliferation in complex 3D geometries. In addition, it can be used to develop custom software for integrating modeling with experimental data processing workflows, facilitated by a comprehensive Python interface to solvers implemented in C++. This article links to two reproducible example problems, showing how the library can be used to build simulations of tumor growth and angiogenesis with realistic vessel networks.


Assuntos
Simulação por Computador , Microvasos , Modelos Biológicos , Software , Adenocarcinoma/patologia , Adenocarcinoma/fisiopatologia , Algoritmos , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Neoplasias do Colo/fisiopatologia , Córnea/irrigação sanguínea , Córnea/fisiologia , Imageamento Tridimensional , Internet , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
IEEE Trans Biomed Eng ; 64(3): 504-511, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27623567

RESUMO

OBJECTIVE: The purpose of this study is to investigate how theoretical predictions of tumor response to radiotherapy (RT) depend on the morphology and spatial representation of the microvascular network. METHODS: A hybrid multiscale model, which couples a cellular automaton model of tumor growth with a model for oxygen transport from blood vessels, is used to predict the viable fraction of cells following one week of simulated RT. Both artificial and biologically derived three-dimensional (3-D) vessel networks of well vascularized tumors are considered and predictions compared with 2-D descriptions. RESULTS: For literature-derived values of the cellular oxygen consumption rate there is little difference in predicted viable fraction when 3-D network representations of biological or artificial vessel networks are employed. Different 2-D representations are shown to either over- or under-estimate viable fractions relative to the 3-D cases, with predictions based on point-wise descriptions shown to have greater sensitivity to vessel network morphology. CONCLUSION: The predicted RT response is relatively insensitive to the morphology of the microvessel network when 3-D representations are adopted, however, sensitivity is greater in certain 2-D representations. SIGNIFICANCE: By using realistic 3-D vessel network geometries this study shows that real and artificial network descriptions and assumptions of spatially uniform oxygen distributions lead to similar RT response predictions in relatively small tissue volumes. This suggests that either a more detailed description of oxygen transport in the microvasculature is required or that the oxygen enhancement ratio used in the well known linear-quadratic RT response model is relatively insensitive to microvascular structure.


Assuntos
Microvasos/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/radioterapia , Neovascularização Patológica/metabolismo , Oxigênio/sangue , Animais , Simulação por Computador , Humanos , Microvasos/patologia , Neoplasias/irrigação sanguínea , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Prognóstico , Resultado do Tratamento , Hipóxia Tumoral/fisiologia , Hipóxia Tumoral/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA