Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Death Discov ; 9(1): 445, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065937

RESUMO

Docetaxel (DCT) resistance is one of the main factors responsible for treatment failure in metastatic prostate cancer (PCa). Although several mechanisms of DCT resistance have been elucidated, the issue is still far from comprehensive. In this work we show that miR-96-5p, miR-183-5p and miR-210-3p (referred to as sDCTR-miRNAs) are specifically released by DCT resistant (DCTR) PCa clones and decrease the efficacy of DCT in PCa cells when overexpressed. Through bioinformatic analysis, we identified several potential targets of sDCTR-miRNAs' activity including FOXO1, IGFBP3, and PDCD4 known to exert a role in DCT resistance. Additionally, we found that PPP2CB and INSIG1 mediated the ability of sDCTR-miRNAs to reduce the efficacy of DCT. We explored whether secreted sDCTR-miRNAs could affect the phenotype of PCa cells. We found that exposure to exosomes derived from DCTR PCa clones (in which the content of sDCTR-miRNAs was higher than in exosomes from parental cells), as well as exposure to exosome loaded with sDCTR-miRNAs, reduced the cytotoxicity of DCT in PCa cells sensitive to the drug. Finally, we validated circulating miR-183-5p and miR-21-5p as potential predictive biomarkers of DCT resistance in PCa patients. Our study suggests a horizontal transfer mechanism mediated by exosomal miRNAs that contributes to reduce docetaxel sensitivity and highlights the relevance of cell-to-cell communication in drug resistance.

3.
Cell Biosci ; 13(1): 121, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393328

RESUMO

BRAFV600E comes as two main splicing variants. The well-studied ref isoform and the recently discovered X1 isoform are co-expressed in cancer cells and differ in terms of 3'UTR length and sequence, as well as C-term protein sequence. Here, we use a melanoma model in zebrafish to study the role played by each isoform in larval pigmentation, nevi formation, and their progression into melanoma tumours. We show that both BRAFV600E-ref and BRAFV600E-X1 proteins promote larval pigmentation and nevi formation, while melanoma-free survival curves performed in adult fish indicate that BRAFV600E-ref protein is a much stronger melanoma driver that BRAFV600E-X1 protein. Crucially, we also show that the presence of the 3'UTR suppresses the effect of ref protein. Our data highlight the necessity to undertake a systematic study of BRAFV600E isoforms, in order to uncover the full spectrum of their kinase-(in)dependent and coding-(in)dependent functions, hence to develop more informed strategies for therapeutic targeting.

4.
Int J Mol Sci ; 23(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35742991

RESUMO

The opening of the ATP-sensitive mitochondrial potassium channel (mitok-ATP) is a common goal of cardioprotective strategies in the setting of acute and chronic myocardial disease. The biologically active thyroid hormone (TH), 3-5-3-triiodothyronine (T3), has been indicated as a potential activator of mitoK-ATP but the underlying mechanisms are still elusive. Here we describe a novel role of T3 in the transcriptional regulation of mitoK and mitoSur, the recently identified molecular constituents of the channel. To mimic human ischemic heart damage, we used a rat model of a low T3 state as the outcome of a myocardial ischemia/reperfusion event, and neonatal rat cardiomyocytes (NRCM) challenged with hypoxia or H2O2. Either in the in vivo or in vitro models, T3 administration to recover the physiological concentrations was able to restore the expression level of both the channel subunits, which were found to be downregulated under the stress conditions. Furthermore, the T3-mediated transcriptional activation of mitoK-ATP in the myocardium and NRCM was associated with the repression of the TH-inactivating enzyme, deiodinase 3 (Dio3), and an up-regulation of the T3-responsive miR-133a-3p. Mechanistically, the loss and gain of function experiments and reporter gene assays performed in NRCM, have revealed a new regulatory axis whereby the silencing of Dio3 under the control of miR-133a-3p drives the T3-dependent modulation of cardiac mitoK and mitoSur transcription.


Assuntos
MicroRNAs , Mitocôndrias Cardíacas , Trifosfato de Adenosina/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias Cardíacas/metabolismo , Canais de Potássio/metabolismo , Ratos , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia
5.
Eur J Pharm Sci ; 169: 106090, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864170

RESUMO

Thymoquinone (TQ) is a natural compound present in the essential oil and in the fixed oil of Nigella sativa L. Like many natural substances, it is characterized by poor aqueous solubility and low stability which limit its bioavailability. Soluplus®-Solutol® HS15 polymeric micelles (TQ-MP) were developed to increase the permeability of TQ with particular attention to overcoming intestinal barrier and the blood brain barrier, for possible oral and parenteral administration. The optimized micelles have dimensions < 100 nm and PdI < 0.2 indicating that the formulation was homogeneous as confirmed also by TEM experiments. EE% was 92.4 ± 0.3%. Stability studies showed a stable formulation following subsequent dilutions and in the gastric-intestinal media. In vitro studies have revealed that the carrier enhances the permeability of TQ in the intestine and in the blood-brain barrier using Parallel Artificial Membrane Permeability Assay (PAMPA) assay and cellular tests with Caco-2 cells and hCMEC/D3 monolayer cells. Up-take study, cell viability and cytotoxicity studies were also conducted. Fluorescent micelles (FITC-MP), were also optimized to perform in vitro up-take study in Caco-2 cells and to study their toxicity in Zebrafish model. The toxicity was evaluated on three lines of Zebrafish: wild type, transgenic line Tg(Myl7:EGFP) in which cardiomyocytes are marked with green fluorescence protein and Tg(flk1-GFP) line which expresses GFP under the control of the vascular endothelial growth factor receptor 2 (vegfr2) promoter.


Assuntos
Micelas , Peixe-Zebra , Animais , Benzoquinonas , Células CACO-2 , Humanos , Técnicas In Vitro , Permeabilidade , Fator A de Crescimento do Endotélio Vascular
6.
Biol Open ; 9(11)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33037013

RESUMO

Here, we present miniCoopR-I, an inducible upgrade of the constitutive miniCoopR vector. We developed miniCoopR-I-sponge-204 and miniCoopR-I-pre-miR-204 vectors and we successfully tested them for their ability to achieve time- (embryo/juvenile/adult) and space- (melanocytic lineage) restricted inhibition/overexpression of miR-204, a positive modulator of pigmentation previously discovered by us. Furthermore, melanoma-free survival curves performed on induced fish at the adult stage indicate that miR-204 overexpression accelerates the development of BRAFV600E-driven melanoma. miniCoopR-I allows study of the impact that coding and non-coding modulators of pigmentation exert on melanomagenesis in adult zebrafish, uncoupling it from the impact that they exert on melanogenesis during embryonic development.This article has an associated First Person interview with the first author of the paper.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/genética , MicroRNAs/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Inativação de Genes , Ordem dos Genes , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Melanócitos/metabolismo , Melanoma/patologia , Peixe-Zebra
7.
Artigo em Inglês | MEDLINE | ID: mdl-33114343

RESUMO

In recent years, the presence in the environment of chemical compounds with thyroid-disrupting effects is progressively increased. This phenomenon has risen concern for human health as the preservation of thyroid system homeostasis is essential for fetal development and for maintaining psychological and physiological wellbeing. An increasing number of studies explored the role of different classes of toxicants in the occurrence and severity of thyroid diseases, but large epidemiological studies are limited and only a few animal or in vitro studies have attempted to identify the mechanisms of chemical action. Recently, epigenetic changes such as alteration of methylation status or modification of non-coding RNAs have been suggested as correlated to possible deleterious effects leading to different thyroid disorders in susceptible individuals. This review aims to analyze the epigenetic alterations putatively induced by chemical exposures and involved in the onset of frequent thyroid diseases such as thyroid cancer, autoimmune thyroiditis and disruption of fetal thyroid homeostasis.


Assuntos
Disruptores Endócrinos , Animais , Disruptores Endócrinos/toxicidade , Epigênese Genética/fisiologia , Epigenômica , Substâncias Perigosas , Humanos
8.
Sci Rep ; 10(1): 5905, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246041

RESUMO

Circulating miRNAs (c-miRNAs) are promising biomarkers for HF diagnosis and prognosis. There are no studies on HF pediatric patients undergoing VAD-implantation. Aims of this study were: to examine the c-miRNAs profile in HF children; to evaluate the effects of VAD on c-miRNAs levels; to in vitro validate putative c-miRNA targets. c-miRNA profile was determined in serum of HF children by NGS before and one month after VAD-implant. The c-miRNA differentially expressed were analyzed by real time-PCR, before and at 4 hrs,1,3,7,14,30 days after VAD-implant. A miRNA mimic transfection study in HepG2 cells was performed to validate putative miRNA targets selected through miRWalk database. Thirteen c-miRNAs were modified at 30 days after VAD-implant compared to pre-VAD at NSG, and, among them, six c-miRNAs were confirmed by Real-TimePCR. Putative targets of the validated c-miRNAs are involved in the hemostatic process. The in vitro study confirmed a down-regulatory effect of hsa-miR-409-3p towards coagulation factor 7 (F7) and F2. Of note, all patients had thrombotic events requiring pump change. In conclusion, in HF children, the level of six c-miRNAs involved in the regulation of hemostatic events changed after 30 days of VAD-treatment. In particular, the lowering of c-miR-409-3p regulating both F7 and F2 could reflect a pro-thrombotic state after VAD-implant.


Assuntos
MicroRNA Circulante/sangue , Insuficiência Cardíaca/terapia , Coração Auxiliar/efeitos adversos , Trombose/diagnóstico , Biomarcadores/sangue , Pré-Escolar , MicroRNA Circulante/agonistas , MicroRNA Circulante/metabolismo , Biologia Computacional , Regulação para Baixo , Fator VII/genética , Feminino , Perfilação da Expressão Gênica , Insuficiência Cardíaca/sangue , Células Hep G2 , Humanos , Lactente , Masculino , MicroRNAs/agonistas , MicroRNAs/sangue , MicroRNAs/metabolismo , Projetos Piloto , Prognóstico , Protrombina/genética , Reação em Cadeia da Polimerase em Tempo Real , Trombose/sangue , Trombose/etiologia
9.
RNA Biol ; 16(7): 865-878, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30929607

RESUMO

Here we present miR-CATCHv2.0, an implemented experimental method that allows the identification of the microRNA species directly bound to an RNA of interest. After cross-linking of microRNA::RNA::Ago2 complexes using formaldehyde, the RNA is fragmented using sonication and then subjected to affinity purification using two sets of biotinylated tiling probes (ODD and EVEN). Finally, enriched microRNA species are retrieved by means of small RNA sequencing coupled with an ad hoc analytical workflow. In BRAFV600E mutant A375 melanoma cells, miR-CATCHv2.0 allowed us to identify 20 microRNAs that target X1, the most abundant isoform of BRAF mRNA. These microRNAs fall into different functional classes, according to the effect that they exert (decrease/increase in BRAFV600E mRNA and protein levels) and to the mechanism they use to achieve it (destabilization/stabilization of X1 mRNA or decrease/increase in its translation). microRNA-induced variations in BRAFV600E protein levels are most of the times coupled to consistent variations in pMEK levels, in melanoma cell proliferation in vitro and in sensitivity to the BRAF inhibitor vemurafenib in a xenograft model in zebrafish. However, microRNAs exist that uncouple the degree of activation of the ERK pathway from the levels of BRAFV600E protein. Our study proposes miR-CATCHv2.0 as an effective tool for the identification of direct microRNA-target interactions and, by using such a tool, unveils the complexity of the post-transcriptional regulation to which BRAFV600E and the ERK pathway are subjected in melanoma cells.


Assuntos
MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Software , Humanos , MicroRNAs/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
10.
ACS Appl Bio Mater ; 2(10): 4464-4470, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021406

RESUMO

Effective excretion of nanostructured noble metals is still one of the most challenging bottlenecks for their employment in clinical practice. Besides the persistence issue, the clinical translation of inorganic nanomaterials is also affected by a bewildering lack of investigations regarding their quantitative biokinetics. Here, we have quantitatively correlated the chemical nature of the three most interesting noble metals for biomedical applications to their biosafety and biokinetics in, respectively, zebrafish and murine models. Gold, silver, and platinum ultrasmall-in-nano architectures with comparable size elicit, after intravenous administration, different excretion pathways depending on their intrinsic metallic nature. Understanding the in vivo fate of noble metal nanoparticles is a significant breakthrough to unlock their clinical employment for the establishment of treatments for neoplasms, infectious diseases, and neurological disorders.

11.
Artigo em Inglês | MEDLINE | ID: mdl-30149577

RESUMO

In the last decades, the incidence of thyroid cancer has increased faster than that of any other malignant tumor type. The cause of thyroid cancer is likely multifactorial and a variety of both exogenous and endogenous has been identified as potential risk factors. Polybrominated diphenyl ethers (PBDEs), used since the 1970s as flame retardants, are still widespread and persistent pollutants today, although their production was definitely phased out in the western countries several years ago. Polybrominated diphenyl ethers are known endocrine disruptors, and the endocrine system is their primary target. Whereas animal studies have ascertained the ability of PBDEs to affect the normal functionality of the thyroid, evidence in humans remains inconclusive, and only a few epidemiological studies investigated the association between exposure to PBDEs and thyroid cancer. However, a number of clues suggest that a prolonged exposure to these chemicals might act a trigger of the most common malignancy of the endocrine system, whereas further studies with an advanced design are suggested.


Assuntos
Carcinogênese/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Retardadores de Chama , Éteres Difenil Halogenados/toxicidade , Neoplasias da Glândula Tireoide/induzido quimicamente , Animais , Humanos
12.
Mol Cancer ; 16(1): 85, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28454577

RESUMO

BACKGROUND: The BRAF protein kinase is widely studied as a cancer driver and therapeutic target. However, the regulation of its expression is not completely understood. RESULTS: Taking advantage of the RNA-seq data of more than 4800 patients belonging to 9 different cancer types, we show that BRAF mRNA exists as a pool of 3 isoforms (reference BRAF, BRAF-X1, and BRAF-X2) that differ in the last part of their coding sequences, as well as in the length (BRAF-ref: 76 nt; BRAF-X1 and BRAF-X2: up to 7 kb) and in the sequence of their 3'UTRs. The expression levels of BRAF-ref and BRAF-X1/X2 are inversely correlated, while the most prevalent among the three isoforms varies from cancer type to cancer type. In melanoma cells, the X1 isoform is expressed at the highest level in both therapy-naïve cells and cells with acquired resistance to vemurafenib driven by BRAF gene amplification or expression of the Δ[3-10] splicing variant. In addition to the BRAF-ref protein, the BRAF-X1 protein (the full length as well as the Δ[3-10] variant) is also translated. The expression levels of the BRAF-ref and BRAF-X1 proteins are similar, and together they account for BRAF functional activities. In contrast, the endogenous BRAF-X2 protein is hard to detect because the C-terminal domain is selectively recognized by the ubiquitin-proteasome pathway and targeted for degradation. CONCLUSIONS: By shedding light on the repertoire of BRAF mRNA and protein variants, and on the complex regulation of their expression, our work paves the way to a deeper understanding of a crucially important player in human cancer and to a more informed development of new therapeutic strategies.


Assuntos
Melanoma/genética , Neoplasias/genética , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Processamento Alternativo/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Éxons/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Indóis/administração & dosagem , Melanoma/tratamento farmacológico , Melanoma/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , RNA Mensageiro/genética , Sulfonamidas/administração & dosagem , Vemurafenib
13.
Oncotarget ; 8(15): 25395-25417, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28445987

RESUMO

Despite increasing amounts of experimental evidence depicting the involvement of non-coding RNAs in cancer, the study of BRAFV600E-regulated genes has thus far focused mainly on protein-coding ones. Here, we identify and study the microRNAs that BRAFV600E regulates through the ERK pathway.By performing small RNA sequencing on A375 melanoma cells and a vemurafenib-resistant clone that was taken as negative control, we discover miR-204 and miR-211 as the miRNAs most induced by vemurafenib. We also demonstrate that, although belonging to the same family, these two miRNAs have distinctive features. miR-204 is under the control of STAT3 and its expression is induced in amelanotic melanoma cells, where it acts as an effector of vemurafenib's anti-motility activity by targeting AP1S2. Conversely, miR-211, a known transcriptional target of MITF, is induced in melanotic melanoma cells, where it targets EDEM1 and consequently impairs the degradation of TYROSINASE (TYR) through the ER-associated degradation (ERAD) pathway. In doing so, miR-211 serves as an effector of vemurafenib's pro-pigmentation activity. We also show that such an increase in pigmentation in turn represents an adaptive response that needs to be overcome using appropriate inhibitors in order to increase the efficacy of vemurafenib.In summary, we unveil the distinct and context-dependent activities exerted by miR-204 family members in melanoma cells. Our work challenges the widely accepted "same miRNA family = same function" rule and provides a rationale for a novel treatment strategy for melanotic melanomas that is based on the combination of ERK pathway inhibitors with pigmentation inhibitors.


Assuntos
Melanoma Amelanótico/genética , Melanoma/genética , MicroRNAs/genética , Neoplasias Cutâneas/genética , Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Subunidades sigma do Complexo de Proteínas Adaptadoras/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases , Melanoma/metabolismo , Melanoma/patologia , Melanoma Amelanótico/tratamento farmacológico , Melanoma Amelanótico/metabolismo , Melanoma Amelanótico/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Sulfonamidas/farmacologia , Transfecção , Vemurafenib
14.
Cytotechnology ; 67(6): 969-75, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24947063

RESUMO

The zebrafish/tumor xenograft angiogenesis assay is used to approach tumor angiogenesis, a pivotal step in cancer progression and target for anti-tumor therapies. Here, we evaluated whether the assay could allow the identification of microRNAs having an anti-angiogenic potential. For that, we transfected DU-145 prostate cancer cells with four microRNAs (miR-125a, miR-320, miR-487b, miR-492) responsive to both anti- and pro-angiogenic stimuli applied to human umbilical vein endothelial cells. After transfection, DU-145 cells were injected close to the developing subintestinal vessels of transgenic Tg(Kdrl:eGFP)s843 zebrafish embryos that express green fluorescent protein under the control of Kdrl promoter. At 72 h post-fertilization, we observed that green fluorescent protein-positive neo-vessels infiltrated the graft of DU-145 transfected with miR-125a, miR-320, and miR-487b. Vice versa, neo-vessel formation and tumor cell infiltration were inhibited when DU-145 cells transfected with miR-492 were used. These results indicated that the zebrafish/tumor xenograft assay was adequate to identify microRNAs able to suppress the release of angiogenic growth factors by angiogenic tumor cells.

15.
Endocrinology ; 155(11): 4581-90, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25137026

RESUMO

Mitochondrial dysfunctions critically affect cardiomyocyte survival during ischemia/reperfusion (I/R) injury. In this scenario p53 activates multiple signaling pathways that impair cardiac mitochondria and promote cell death. p53 is a validated target of miR-30 whose levels fall under ischemic conditions. Although triiodothyronine (T3) rescues post-ischemic mitochondrial activity and cell viability, no data are available on its role in the modulation of p53 signaling in I/R. Here we test the hypothesis that early T3 supplementation in rats inhibits the post I/R activation of p53 pro-death cascade through the maintenance of miRNA 30a expression. In our model, T3 infusion improves the recovery of post-ischemic cardiac performance. At the molecular level, the beneficial effect of T3 is associated with restored levels of miR-30a expression in the area at risk (AAR) that correspond to p53 mRNA downregulation. The concomitant decrease in p53 protein content reduces Bax expression and limits mitochondrial membrane depolarization resulting in preserved mitochondrial function and decreased apoptosis and necrosis extent in the AAR. Also in primary cardiomyocyte culture of neonatal rats, T3 prevents both miR-30a downregulation and p53 raise induced by hypoxia. The regulatory effect of T3 is greatly suppressed by miR-30a knockdown. Overall these data suggest a new mechanism of T3-mediated cardioprotection that is targeted to mitochondria and acts, at least in part, through the regulation of miR-30a/p53 axis.


Assuntos
MicroRNAs/genética , Mitocôndrias Cardíacas/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Tri-Iodotironina/farmacologia , Proteína Supressora de Tumor p53/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Masculino , MicroRNAs/metabolismo , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Hormônios Tireóideos/metabolismo , Proteína Supressora de Tumor p53/metabolismo
16.
Physiol Genomics ; 43(20): 1153-9, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21846807

RESUMO

The prosenescence role of miR-290 and nocodazole has been documented in primary mouse embryo fibroblasts (MEF), while it is not clear whether immortal murine fibroblasts are still responsive to these senescence inducing stimuli. To establish this point, immortal murine fibroblasts with functional (NIH3T3) or nonfunctional p53 (I-MEF) and low levels of miR-290 were tested for their capability to undergo senescence after exposure to either nocodazole or miR-290. Our results clearly indicate that nocodazole induces senescence only in NIH3T3 cells with a functional p53 but not in I-MEF lacking a functional p53. miR-290 overexpression is unable to address any of the tested immortalized clones toward senescence, regardless of the p53 status, suggesting that the prosenescence role of miR-290 is specific for primary but not for immortal murine fibroblasts. Moreover our findings suggest that the mere downregulation of a potential tumor suppressor miRNA in a given cell type does not necessarily imply that it behaves as a tumor suppressor.


Assuntos
Senescência Celular/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Transformada , Senescência Celular/efeitos dos fármacos , Células Clonais , Fibroblastos/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Nocodazol/farmacologia , Transfecção
17.
Aging (Albany NY) ; 3(7): 665-71, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21765199

RESUMO

The life span (Hayflick limit) of primary mouse embryo fibroblasts (MEF) in culture is variable but it is still unclear if the escape of the Hayflick limit is also variable. To address this point MEF were expanded every fifteen days (6T15) instead of every three days (6T3) until they became immortal. With this protocol MEF lifespan was extended and immortalization accordingly delayed. By testing a panel of genes (p19ARF, p16, p21) and miRNAs (miR-20a, miR-21, miR-28, miR-290) related to primary MEF senescence, a switch of p21 from up to down regulation, the down regulation of specific miRNAs as well as a massive shift from diploidy to hyperdiploidy were observed in coincidence with the resumption of cell proliferation. Collectively, these data indicate that the inactivation of genes and miRNAs, important in controlling cell proliferation, might be determinant for the escape from the Hayflick limit. In support of this hypothesis was the finding that some of the down regulated miRNAs transfected in immortalized MEF inhibited cell proliferation thus displaying a tumor suppressor-like activity.


Assuntos
Senescência Celular/fisiologia , Fibroblastos/fisiologia , Genes Supressores de Tumor , MicroRNAs/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Fibroblastos/citologia , Regulação da Expressão Gênica , Camundongos , MicroRNAs/genética
18.
J Cell Mol Med ; 14(11): 2633-40, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21114763

RESUMO

Expression of microRNAs changes markedly in tumours and evidence indicates that they are causatively related to tumourigenesis, behaving as tumour suppressor microRNAs or onco microRNAs; in some cases they can behave as both depending on the type of cancer. Some tumour suppressor microRNAs appear to be an integral part of the p53 and Retinoblastoma (RB) network, the main regulatory pathways controlling senescence, a major tumour suppressor mechanism. The INK4a/ARF locus which codifies for two proteins, p19ARF and p16INK4a, plays a central role in senescence by controlling both p53 and RB. Recent evidence shows that the proto-oncogene leukaemia/lymphoma related factor, a p19ARF specific repressor, is controlled by miRNAs and that miRNAs, in particular miR-20a and miR-290, are causatively involved in mouse embryo fibroblasts (MEF) senescence in culture. Intriguingly, both miR-20a, member of the oncogenic miR-17-92 cluster, and miR-290, belonging to the miR-290-295 cluster, are highly expressed in embryonic stem (ES) cells. The pro-senescence role of miR-20a and miR-290 in MEF is apparently in contrast with their proliferative role in tumour and ES cells. We propose that miRNAs may exert opposing functions depending on the miRNAs repertoire as well as target/s level/s present in different cellular contexts, suggesting the importance of evaluating miRNAs activity in diverse genetic settings before their therapeutic use as tumour suppressors.


Assuntos
Senescência Celular , MicroRNAs/fisiologia , Neoplasias/genética , Neoplasias/patologia , Animais , Humanos , Camundongos , Proto-Oncogene Mas
19.
J Biol Chem ; 285(50): 39551-63, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20923760

RESUMO

Leukemia/lymphoma-related factor (LRF) is a transcriptional repressor, which by recruiting histone deacetylases specifically represses p19/ARF expression, thus behaving as an oncogene. Conversely, in mouse embryonic fibroblasts (MEF), LRF inhibition causes aberrant p19ARF up-regulation resulting in proliferative defects and premature senescence. We have recently shown that LRF is controlled by microRNAs. Here we show that LRF acts on MEF proliferation and senescence/apoptosis by repressing miR-28 and miR-505, revealing a regulatory circuit where microRNAs (miRNAs) work both upstream and downstream of LRF. By analyzing miRNA expression profiles of MEF transfected with LRF-specific short interfering RNAs, we found that miR-28 and miR-505 are modulated by LRF. Both miRNAs are predicted to target alternative splicing factor/splicing factor 2 (ASF/SF2), a serine/arginine protein essential for cell viability. In vertebrates, loss or inactivation of ASF/SF2 may result in genomic instability and induce G(2) cell cycle arrest and apoptosis. We showed that miR-28 and miR-505 modulate ASF/SF2 by directly binding ASF/SF2 3'-UTR. Decrease in LRF causes a decrease in ASF/SF2, which depends on up-regulation of miR-28 and miR-505. Alteration of each of the members of the LRF/miR-28/miR-505/ASF/SF2 axis affects MEF proliferation and the number of senescent and apoptotic cells. Consistently, the axis is coordinately modulated as cell senescence increases with passages in MEF culture. In conclusion, we show that LRF-dependent miRNAs miR-28 and miR-505 control MEF proliferation and survival by targeting ASF/SF2 and suggest a central role of LRF-related miRNAs, in addition to the role of LRF-dependent p53 control, in cellular homeostasis.


Assuntos
Processamento Alternativo , Apoptose , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica , MicroRNAs/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas , Animais , Senescência Celular , Células HEK293 , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Processamento de Serina-Arginina
20.
Hum Mutat ; 31(4): 456-65, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20127977

RESUMO

The transcription of the DeltaN133p53 isoform of the TP53 gene is controlled by an internal promoter region (IPR) containing eight polymorphisms in 11 common haplotypes, following a resequencing of 47 Caucasians. We assayed the functional effects of the commonest six haplotypes on the promoter activity with a luciferase reporter system, in HeLa and 293T cells. These studies showed that different IPR haplotypes are associated with differences in the promoter activity resulting in marked variation in the baseline expression of DeltaN133p53. In vivo quantitative-polymerase chain reaction (PCR) on human tissues confirmed that the baseline levels of DeltaN133p53 showed haplotype specific differences that paralleled those seen in vitro. When cell lines were treated with camptothecin, the fold-increase in DeltaN133p53 levels was dose-dependent but haplotype-independent (i.e., similar for all the haplotypes). Finally, we used an electrophoretic mobility shift assay to analyze the rs1794287 polymorphism and found changes in the pattern of protein binding. This partially confirmed our in silico analysis showing that the polymorphism rs1794287 can affect the function of the internal promoter by changing its affinity for several transcription factors. Thus, we showed that the expression of DeltaN133p53 is under genetic control, and suggested the presence of interindividual differences underlying this mechanism.


Assuntos
Haplótipos/genética , Proteínas Mutantes/metabolismo , Regiões Promotoras Genéticas , Proteína Supressora de Tumor p53/genética , Biologia Computacional , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Células HeLa , Homozigoto , Humanos , Íntrons/genética , Luciferases/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , Isoformas de Proteínas/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA