Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 120(8): 899-913, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38377486

RESUMO

AIMS: The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signalling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and haematologic disorders, including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress. We hypothesized that Lnk-/- mice are susceptible to atrial fibrillation (AF) and that rs3184504 is associated with AF and AF-related stroke in humans. During inflammation, reactive lipid dicarbonyls are the major components of oxidative injury, and we further hypothesized that these mediators are critical drivers of the AF substrate in Lnk-/- mice. METHODS AND RESULTS: Lnk-/- or wild-type (WT) mice were treated with vehicle or 2-hydroxybenzylamine (2-HOBA), a dicarbonyl scavenger, for 3 months. Compared with WT, Lnk-/- mice displayed increased AF duration that was prevented by 2-HOBA. In the Lnk-/- atria, action potentials were prolonged with reduced transient outward K+ current, increased late Na+ current, and reduced peak Na+ current, pro-arrhythmic effects that were inhibited by 2-HOBA. Mitochondrial dysfunction, especially for Complex I, was evident in Lnk-/- atria, while scavenging lipid dicarbonyls prevented this abnormality. Tumour necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1ß) were elevated in Lnk-/- plasma and atrial tissue, respectively, both of which caused electrical and bioenergetic remodelling in vitro. Inhibition of soluble TNF-α prevented electrical remodelling and AF susceptibility, while IL-1ß inhibition improved mitochondrial respiration but had no effect on AF susceptibility. In a large database of genotyped patients, rs3184504 was associated with AF, as well as AF-related stroke. CONCLUSION: These findings identify a novel role for LNK in the pathophysiology of AF in both experimental mice and humans. Moreover, reactive lipid dicarbonyls are critical to the inflammatory AF substrate in Lnk-/- mice and mediate the pro-arrhythmic effects of pro-inflammatory cytokines, primarily through electrical remodelling.


Assuntos
Potenciais de Ação , Proteínas Adaptadoras de Transdução de Sinal , Fibrilação Atrial , Modelos Animais de Doenças , Interleucina-1beta , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos , Animais , Feminino , Humanos , Masculino , Potenciais de Ação/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/genética , Benzilaminas/farmacologia , Predisposição Genética para Doença , Frequência Cardíaca/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética
2.
Mol Med ; 28(1): 60, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659521

RESUMO

BACKGROUND: African Americans (AAs) are disproportionately affected by cardiovascular disease (CVD), they are 20% more likely to die from CVD than whites, chronic exposure to inflammation and oxidative stress contributes to CVD. In previous studies, enhancing parasympathetic cholinergic activity has been shown to decrease inflammation. Considering that AAs have decreased parasympathetic activity compared to whites, we hypothesize that stimulating it with a central acetylcholinesterase (AChE) inhibitor, galantamine, would prevent lipid-induced oxidative stress. OBJECTIVE: To test the hypothesis that acute dose of galantamine, an AChE inhibitor, decreases lipid-induced oxidative stress in obese AAs. METHODS: Proof-of-concept, double-blind, randomized, placebo-controlled, crossover study that tested the effect of a single dose of 16 mg of galantamine versus placebo on lipid-induced oxidative stress in obese AAs. Subjects were studied on two separate days, one week apart. In each study day, 16 mg or matching placebo was administered before 20% intralipids infusion at doses of 0.8 mL/m2/min with heparin at doses of 200 U/h for 4 h. Outcomes were assessed at baseline, 2 and 4 h during the infusion. MAIN OUTCOME MEASURES: Changes in F2-isoprostane (F2-IsoPs), marker of oxidative stress, measured in peripheral blood mononuclear cells (PBMC) and in plasma at baseline, 2, and 4-h post-lipid infusion. Secondary outcomes include changes in inflammatory cytokines (IL-6, TNF alpha). RESULTS: A total of 32 obese AA women were screened and fourteen completed the study (age 37.8 ± 10.70 years old, BMI 38.7 ± 3.40 kg/m2). Compared to placebo, 16 mg of galantamine significantly inhibited the increase in F2-IsoPs in PBMC (0.007 ± 0.008 vs. - 0.002 ± 0.006 ng/sample, P = 0.016), and plasma (0.01 ± 0.02 vs. - 0.003 ± 0.01 ng/mL, P = 0.023). Galantamine also decreased IL-6 (11.4 ± 18.45 vs. 7.7 ± 15.10 pg/mL, P = 0.021) and TNFα levels (18.6 ± 16.33 vs. 12.9 ± 6.16 pg/mL, P = 0.021, 4-h post lipid infusion) compared with placebo. These changes were associated with an increased plasma acetylcholine levels induced by galantamine (50.5 ± 10.49 vs. 43.6 ± 13.38 during placebo pg/uL, P = 0.025). CONCLUSIONS: In this pilot, proof-of-concept study, enhancing parasympathetic nervous system (PNS) cholinergic activity with galantamine inhibited lipid-induced oxidative stress and inflammation induced by lipid infusion in obese AAs. TRIAL REGISTRATION: ClinicalTrials.gov identifiers NCT02365285.


Assuntos
Doenças Cardiovasculares , Galantamina , Acetilcolinesterase , Adulto , Negro ou Afro-Americano , Colinérgicos , Estudos Cross-Over , Método Duplo-Cego , Feminino , Galantamina/farmacologia , Galantamina/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Interleucina-6 , Leucócitos Mononucleares , Lipídeos , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Estresse Oxidativo
3.
Circ Res ; 128(7): 908-933, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793336

RESUMO

Elevated cardiovascular risk including stroke, heart failure, and heart attack is present even after normalization of blood pressure in patients with hypertension. Underlying immune cell activation is a likely culprit. Although immune cells are important for protection against invading pathogens, their chronic overactivation may lead to tissue damage and high blood pressure. Triggers that may initiate immune activation include viral infections, autoimmunity, and lifestyle factors such as excess dietary salt. These conditions activate the immune system either directly or through their impact on the gut microbiome, which ultimately produces chronic inflammation and hypertension. T cells are central to the immune responses contributing to hypertension. They are activated in part by binding specific antigens that are presented in major histocompatibility complex molecules on professional antigen-presenting cells, and they generate repertoires of rearranged T-cell receptors. Activated T cells infiltrate tissues and produce cytokines including interleukin 17A, which promote renal and vascular dysfunction and end-organ damage leading to hypertension. In this comprehensive review, we highlight environmental, genetic, and microbial associated mechanisms contributing to both innate and adaptive immune cell activation leading to hypertension. Targeting the underlying chronic immune cell activation in hypertension has the potential to mitigate the excess cardiovascular risk associated with this common and deadly disease.


Assuntos
Hipertensão/imunologia , Imunidade Celular/fisiologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Anti-Hipertensivos/uso terapêutico , Linfócitos B/imunologia , Proteínas do Sistema Complemento/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Resistência a Medicamentos , Feminino , Microbioma Gastrointestinal/imunologia , Fatores de Risco de Doenças Cardíacas , Interações entre Hospedeiro e Microrganismos , Humanos , Hipertensão/tratamento farmacológico , Fenômenos do Sistema Imunitário , Imunidade Inata , Inflamassomos/imunologia , Inflamação/genética , Inflamação/imunologia , Macrófagos/imunologia , Masculino , Monócitos/imunologia , Fatores Sexuais , Cloreto de Sódio na Dieta/efeitos adversos , Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Viroses/imunologia
4.
Cardiovasc Res ; 117(5): 1358-1371, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33038226

RESUMO

AIMS: Prior studies have focused on the role of the kidney and vasculature in salt-induced modulation of blood pressure; however, recent data indicate that sodium accumulates in tissues and can activate immune cells. We sought to examine mechanisms by which salt causes activation of human monocytes both in vivo and in vitro. METHODS AND RESULTS: To study the effect of salt in human monocytes, monocytes were isolated from volunteers to perform several in vitro experiments. Exposure of human monocytes to elevated Na+ex vivo caused a co-ordinated response involving isolevuglandin (IsoLG)-adduct formation, acquisition of a dendritic cell (DC)-like morphology, expression of activation markers CD83 and CD16, and increased production of pro-inflammatory cytokines tumour necrosis factor-α, interleukin (IL)-6, and IL-1ß. High salt also caused a marked change in monocyte gene expression as detected by RNA sequencing and enhanced monocyte migration to the chemokine CC motif chemokine ligand 5. NADPH-oxidase inhibition attenuated monocyte activation and IsoLG-adduct formation. The increase in IsoLG-adducts correlated with risk factors including body mass index, pulse pressure. Monocytes exposed to high salt stimulated IL-17A production from autologous CD4+ and CD8+ T cells. In addition, to evaluate the effect of salt in vivo, monocytes and T cells isolated from humans were adoptively transferred to immunodeficient NSG mice. Salt feeding of humanized mice caused monocyte-dependent activation of human T cells reflected by proliferation and accumulation of T cells in the bone marrow. Moreover, we performed a cross-sectional study in 70 prehypertensive subjects. Blood was collected for flow cytometric analysis and 23Na magnetic resonance imaging was performed for tissue sodium measurements. Monocytes from humans with high skin Na+ exhibited increased IsoLG-adduct accumulation and CD83 expression. CONCLUSION: Human monocytes exhibit co-ordinated increases in parameters of activation, conversion to a DC-like phenotype and ability to activate T cells upon both in vitro and in vivo sodium exposure. The ability of monocytes to be activated by sodium is related to in vivo cardiovascular disease risk factors. We therefore propose that in addition to the kidney and vasculature, immune cells like monocytes convey salt-induced cardiovascular risk in humans.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos , Monócitos/efeitos dos fármacos , NADPH Oxidases/metabolismo , Cloreto de Sódio/farmacologia , Transferência Adotiva , Adulto , Idoso , Animais , Antígenos CD/metabolismo , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Ativação Enzimática , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Imunoglobulinas/metabolismo , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Pessoa de Meia-Idade , Monócitos/enzimologia , Monócitos/imunologia , Monócitos/transplante , Fenótipo , Receptores de IgG/metabolismo , Cloreto de Sódio na Dieta/farmacologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígeno CD83
7.
Biochim Biophys Acta ; 1853(2): 396-408, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450976

RESUMO

Inflammasomes play a critical role in the development of vascular diseases. However, the molecular mechanisms activating the inflammasome in endothelial cells and the relevance of this inflammasome activation is far from clear. Here, we investigated the mechanisms by which an Nlrp3 inflammasome is activated to result in endothelial dysfunction during coronary arteritis by Lactobacillus casei (L. casei) cell wall fragments (LCWE) in a mouse model for Kawasaki disease. Endothelial dysfunction associated with increased vascular cell adhesion protein 1 (VCAM-1) expression and endothelial-leukocyte adhesion was observed during coronary arteritis in mice treated with LCWE. Accompanied with these changes, the inflammasome activation was also shown in coronary arterial endothelium, which was characterized by a marked increase in caspase-1 activity and IL-1ß production. In cultured endothelial cells, LCWE induced Nlrp3 inflammasome formation, caspase-1 activation and IL-1ß production, which were blocked by Nlrp3 gene silencing or lysosome membrane stabilizing agents such as colchicine, dexamethasone, and ceramide. However, a potassium channel blocker glibenclamide or an oxygen free radical scavenger N-acetyl-l-cysteine had no effects on LCWE-induced inflammasome activation. LCWE also increased endothelial cell lysosomal membrane permeability and triggered lysosomal cathepsin B release into cytosol. Silencing cathepsin B blocked LCWE-induced Nlrp3 inflammasome formation and activation in endothelial cells. In vivo, treatment of mice with cathepsin B inhibitor also abolished LCWE-induced inflammasome activation in coronary arterial endothelium. It is concluded that LCWE enhanced lysosomal membrane permeabilization and consequent release of lysosomal cathepsin B, resulting in activation of the endothelial Nlrp3 inflammasome, which may contribute to the development of coronary arteritis.


Assuntos
Arterite/patologia , Proteínas de Transporte/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Células Endoteliais/metabolismo , Inflamassomos/metabolismo , Lisossomos/metabolismo , Animais , Arterite/metabolismo , Catepsina B/antagonistas & inibidores , Catepsina B/metabolismo , Parede Celular/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Sequestradores de Radicais Livres/metabolismo , Inativação Gênica/efeitos dos fármacos , Inflamação/patologia , Lacticaseibacillus casei , Lisossomos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Bloqueadores dos Canais de Potássio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
8.
J Cell Mol Med ; 18(11): 2165-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24912985

RESUMO

Dynein-mediated autophagosome (AP) trafficking was recently demonstrated to contribute to the formation of autophagolysosomes (APLs) and autophagic flux process in coronary arterial myocytes (CAMs). However, it remains unknown how the function of dynein as a motor protein for AP trafficking is regulated under physiological and pathological conditions. The present study tested whether the dynein-mediated autophagy maturation is regulated by a redox signalling associated with lysosomal Ca(2+) release machinery. In primary cultures of CAMs, reactive oxygen species (ROS) including H2 O2 and O2 (-.) (generated by xanthine/xanthine oxidase) significantly increased dynein ATPase activity and AP movement, which were accompanied by increased lysosomal fusion with AP and APL formation. Inhibition of dynein activity by (erythro-9-(2-hydroxy-3-nonyl)adenine) (EHNA) or disruption of the dynein complex by dynamitin (DCTN2) overexpression blocked ROS-induced dynein activation, AP movement and APL formation, and resulted in an accumulation of AP along with a failed breakdown of AP. Antagonism of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca(2+) signalling with NED-19 and PPADS abolished ROS-enhanced lysosomal Ca(2+) release and dynein activation in CAMs. In parallel, all these changes were also enhanced by overexpression of NADPH oxidase-1 (Nox1) gene in CAMs. Incubation with high glucose led to a marked O2 (-.) production compared with normoglycaemic CAMs, while Nox1 inhibitor ML117 abrogated this effect. Moreover, ML117 and NED-19 and PPADS significantly suppressed dynein activity and APL formation caused by high glucose. Taken together, these data suggest that ROS function as important players to regulate dynein-dependent AP trafficking leading to efficient autophagic maturation in CAMs.


Assuntos
Autofagia/genética , Vasos Coronários/metabolismo , Dineínas/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cálcio/metabolismo , Dineínas/genética , Humanos , Lisossomos/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Fagossomos/genética , Fagossomos/metabolismo , Transporte Proteico/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA