Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(11): 6045-6057, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37856794

RESUMO

Cancer is the second leading cause of death worldwide, with a dramatic impact due to the acquired resistance of cancers to used chemotherapeutic drugs and treatments. The enzyme lactate dehydrogenase (LDH-A) is responsible for cancer cell proliferation. Recently the development of selective LDH-A inhibitors as drugs for cancer treatment has been reported to be an efficient strategy aiming to decrease cancer cell proliferation and increase the sensitivity to traditional chemotherapeutics. This study aims to obtain a stable and active biocatalyst that can be utilized for such drug screening purposes. It is conceived by adopting human LDH-A enzyme (hLDH-A) and investigating different immobilization techniques on porous supports to achieve a stable and reproducible biosensor for anticancer drugs. The hLDH-A enzyme is covalently immobilized on mesoporous silica (MCM-41) functionalized with amino and aldehyde groups following two different methods. The mesoporous support is characterized by complementary techniques to evaluate the surface chemistry and the porous structure. Fluorescence microscopy analysis confirms the presence of the enzyme on the support surface. The tested immobilizations achieve yields of ≥80%, and the best retained activity of the enzyme is as high as 24.2%. The optimal pH and temperature of the best immobilized hLDH-A are pH 5 and 45 °C for the reduction of pyruvate into lactate, while those for the free enzyme are pH 8 and 45 °C. The stability test carried out at 45 °C on the immobilized enzyme shows a residual activity close to 40% for an extended time. The inhibition caused by NHI-2 is similar for free and immobilized hLDH-A, 48% and 47%, respectively. These findings are significant for those interested in immobilizing enzymes through covalent attachment on inorganic porous supports and pave the way to develop stable and active biocatalyst-based sensors for drug screenings that are useful to propose drug-based cancer treatments.


Assuntos
Técnicas Biossensoriais , L-Lactato Desidrogenase , Humanos , Estabilidade Enzimática , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Técnicas Biossensoriais/métodos
2.
Materials (Basel) ; 15(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36431678

RESUMO

In recent decades, several abatement techniques have been proposed for organic dyes and metal cations. In this scenario, adsorption is the most known and studied. Clinoptilolite was considered, since it is a zeolite with a relatively low cost (200-600 $ tons-1) compared to the most well-known adsorbent used in wastewater treatment. In this work, Clinoptilolite was used for the adsorption of Methylene Blue (MB) at three different concentrations, namely, 100, 200, and 250 ppm. Furthermore, the adsorption capacity of the natural zeolite was compared with that of Activated Charcoal (250 ppm of MB). The two adsorbents were characterized by complementary techniques, such as N2 physisorption at -196 °C, X-ray diffraction, and field emission scanning electron microscopy. During the adsorption tests, Clinoptilolite exhibited the best adsorption capacities at 100 ppm: the abatement reached 98% (t = 15 min). Both Clinoptilolite and Activated Charcoal, at 250 ppm, exhibited the same adsorption capacities, namely, 96%. Finally, at 250 ppm MB, the adsorption capacity of Clinoptilolite was analyzed with the copresence of Zn2+ and Cd2+ (10 ppm), and the adsorption capacities were compared with those of Activated Charcoal. The results showed that both adsorbents achieved 100% MB abatement (t = 40 min). However, cation adsorption reached a plateau after 120 min (Zn2+ = 86% and 57%; Cd2+ = 53% and 50%, for Activated Charcoal and Clinoptilolite, respectively) due to the preferential adsorption of MB molecules. Furthermore, kinetic studies were performed to fully investigate the adsorption mechanism. It was evidenced that the pseudo-second-order kinetic model is effective in describing the adsorption mechanism of both adsorbents, highlighting the chemical interaction between the adsorbent and adsorbate.

3.
Materials (Basel) ; 14(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443062

RESUMO

A set of manganese oxide catalysts was synthesized via two preparation techniques: solution combustion synthesis (Mn3O4/Mn2O3-SCS and Mn2O3-SCS) and sol-gel synthesis (Mn2O3-SG550 and Mn2O3-SG650). The physicochemical properties of the catalysts were studied by means of N2-physisorption at -196 °C, X-ray powder diffraction, H2 temperature-programmed reduction (H2-TPR), soot-TPR, X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FESEM). The high catalytic performance of the catalysts was verified in the oxidation of Volatile Organic Compounds (VOC) probe molecules (ethene and propene) and carbon soot in a temperature-programmed oxidation setup. The best catalytic performances in soot abatement were observed for the Mn2O3-SG550 and the Mn3O4/Mn2O3-SCS catalysts. The catalytic activity in VOC total oxidation was effectively correlated to the enhanced low-temperature reducibility of the catalysts and the abundant surface Oα-species. Likewise, low-temperature oxidation of soot in tight contact occurred over the Mn2O3-SG550 catalyst and was attributed to high amounts of surface Oα-species and better surface reducibility. For the soot oxidation in loose contact, the improved catalytic performance of the Mn3O4/Mn2O3-SCS catalyst was attributed to the beneficial effects of both the morphological structure that-like a filter-enhanced the capture of soot particles and to a probable high amount of surface acid-sites, which is characteristic of Mn3O4 catalysts.

4.
J Photochem Photobiol B ; 215: 112113, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383556

RESUMO

Photolyases are enzymes that repair DNA damage caused by solar radiation. Due to their photorepair potential, photolyases added in topical creams and used in medical treatments has allowed to reverse skin damage and prevent the development of different diseases, including actinic keratosis, premature photoaging and cancer. For this reason, research has been oriented to the study of new photolyases performing in extreme environments, where high doses of UV radiation may be a key factor for these enzymes to have perfected their photorepair potential. Generally, the extracted enzymes are first encapsulated and then added to the topical creams to increase their stability. However, other well consolidated immobilization methods are interesting strategies to be studied that may improve the biocatalyst performance. This review aims to go through the different Antarctic organisms that have exhibited photoreactivation activity, explaining the main mechanisms of photolyase DNA photorepair. The challenges of immobilizing these enzymes on porous and nanostructured supports is also discussed. The comparison of the most reported immobilization methods with respect to the structure of photolyases show that both covalent and ionic immobilization methods produced an increase in their stability. Moreover, the use of nanosized materials as photolyase support would permit the incorporation of the biocatalyst into the target cell, which is a technological requirement that photolyase based biocatalysts must fulfill.


Assuntos
Reparo do DNA , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Animais , Regiões Antárticas , Ativação Enzimática , Humanos
5.
Sci Rep ; 9(1): 3875, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846727

RESUMO

To reduce the emissions of internal combustion engines, ceria-based catalysts have been widely investigated as possible alternatives to the more expensive noble metals. In the present work, a set of four different ceria-based materials was prepared via hydrothermal synthesis, studying the effect of Cu and Mn as dopants both in binary and ternary oxides. In situ Raman analyses were carried out to monitor the behaviour of defect sites throughout thermal cycles and during the soot oxidation reaction. Despite ceria doped with 5% of Cu featured the highest specific surface area, reducibility and amount of intrinsic and extrinsic defects, a poor soot oxidation activity was observed through the standard activity tests. This result was confirmed by the calculation of soot conversion curves obtained through a newly proposed procedure, starting from the Raman spectra collected during the in situ tests. Moreover, Raman analyses highlighted that new defectiveness was produced on the Cu-doped catalyst at high temperature, especially after soot conversion, while a slight increase of the defect band and a total reversibility were observed in case of the ternary oxide and pure/Mn-doped ceria, respectively. The major increment was related to the extrinsic defects component; tests carried out in different atmospheres suggested the assignment of this feature to vacancy-free sites containing oxidized doping cations. Its increase at the end of the tests can be an evidence of peroxides and superoxides deactivation on catalysts presenting excessive oxygen vacancy concentrations. Instead, ceria doped with 5% of Mn exhibited the best soot oxidation activity, thanks to an intermediate density of oxygen vacancies and to its well-defined morphology.

6.
Nanoscale Res Lett ; 11(1): 494, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27830571

RESUMO

In the present work, ceria, ceria-zirconia (Ce = 80 at.%, Zr = 20 at.%), ceria praseodymia (Ce = 80 at.%, Pr = 20 at.%) and ceria-zirconia-praseodymia catalysts (Ce = 80 at.%, Zr = 10 at.% and Pr = 10 at.%) have been prepared by the multi-inlet vortex reactor (MIVR). For each set of samples, two inlet flow rates have been used during the synthesis (namely, 2 ml min-1, and 20 ml min-1) in order to obtain different particle sizes. Catalytic activity of the prepared materials has been investigated for CO and soot oxidation reactions. As a result, when the catalysts exhibit similar crystallite sizes (in the 7.7-8.8 nm range), it is possible to observe a direct correlation between the Ov/F2g vibrational band intensity ratios and the catalytic performance for the CO oxidation. This means that structural (superficial) defects play a key role for this process. The incorporation of Zr and Pr species into the ceria lattice increases the population of structural defects, as measured by Raman spectroscopy, according to the order: CeO2 < Ce80Zr20 < Ce80Zr10Pr10 < Ce80Pr20. On the other hand, the presence of zirconium and praseodymium into the ceria lattice does not have a direct beneficial effect on the soot oxidation activity for these catalysts, in contrast with nanostructured ones (e.g., Ce-Zr-O nanopolyhedra, Ce-Pr-O nanocubes) described elsewhere (Andana et al. Appl. Catal. B 197: 125-137, 2016; Piumetti et al., Appl Catal B 180: 271-282, 2016).

7.
Nanoscale Res Lett ; 11(1): 278, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27255898

RESUMO

A set of ceria, ceria-zirconia (Ce 80 at.%, Zr 20 at.%), ceria-praseodymia (Ce 80 at.%, Pr 20 at.%) and ceria-zirconia-praseodymia (Ce 80 at.%, Zr 10 at.% and Pr 10 at.%) catalysts has been prepared by the solution combustion synthesis (SCS). The effects of Zr and Pr as dopants on ceria have been studied in CO and soot oxidation reactions. All the prepared catalysts have been characterized by complementary techniques, including XRD, FESEM, N2 physisorption at -196 °C, H2-temperature-programmed reduction, and X-ray photoelectron spectroscopy to investigate the relationships between the structure and composition of materials and their catalytic performance. Better results for CO oxidation have been obtained with mixed oxides (performance scale, Ce80Zr10Pr10 > Ce80Zr20 > Ce80Pr20) rather than pure ceria, thus confirming the beneficial role of multicomponent catalysts for this prototypical reaction. Since CO oxidation occurs via a Mars-van Krevelen (MvK)-type mechanism over ceria-based catalysts, it appears that the presence of both Zr and Pr species into the ceria framework improves the oxidation activity, via collective properties, such as electrical conductivity and surface or bulk oxygen anion mobility. On the other hand, this positive effect becomes less prominent in soot oxidation, since the effect of catalyst morphology prevails.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA