Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 36(6): 109501, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380027

RESUMO

Peroxisome proliferator-activated receptor ß/δ (PPARß/δ) activates AMP-activated protein kinase (AMPK) and plays a crucial role in glucose and lipid metabolism. Here, we examine whether PPARß/δ activation effects depend on growth differentiation factor 15 (GDF15), a stress response cytokine that regulates energy metabolism. Pharmacological PPARß/δ activation increases GDF15 levels and ameliorates glucose intolerance, fatty acid oxidation, endoplasmic reticulum stress, and inflammation, and activates AMPK in HFD-fed mice, whereas these effects are abrogated by the injection of a GDF15 neutralizing antibody and in Gdf15-/- mice. The AMPK-p53 pathway is involved in the PPARß/δ-mediated increase in GDF15, which in turn activates again AMPK. Consistently, Gdf15-/- mice show reduced AMPK activation in skeletal muscle, whereas GDF15 administration results in AMPK activation in this organ. Collectively, these data reveal a mechanism by which PPARß/δ activation increases GDF15 levels via AMPK and p53, which in turn mediates the metabolic effects of PPARß/δ by sustaining AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Adenilato Quinase/metabolismo , Animais , Linhagem Celular , Estresse do Retículo Endoplasmático , Ativação Enzimática , Fator 15 de Diferenciação de Crescimento/deficiência , Inflamação/patologia , Insulina/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
2.
Signal Transduct Target Ther ; 5(1): 14, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32296036

RESUMO

Sirtuin 3 (SIRT3) is a deacetylase that modulates proteins that control metabolism and protects against oxidative stress. Modulation of SIRT3 activity has been proposed as a promising therapeutic target for ameliorating metabolic diseases and associated cardiac disturbances. In this study, we investigated the role of SIRT3 in inflammation and fibrosis in the heart using male mice with constitutive and systemic deletion of SIRT3 and human cardiac AC16 cells. SIRT3 knockout mice showed cardiac fibrosis and inflammation that was characterized by augmented transcriptional activity of AP-1. Consistent with this, SIRT3 overexpression in human and neonatal rat cardiomyocytes partially prevented the inflammatory and profibrotic response induced by TNF-α. Notably, these effects were associated with a decrease in the mRNA and protein levels of FOS and the DNA-binding activity of AP-1. Finally, we demonstrated that SIRT3 inhibits FOS transcription through specific histone H3 lysine K27 deacetylation at its promoter. These findings highlight an important function of SIRT3 in mediating the often intricate profibrotic and proinflammatory responses of cardiac cells through the modulation of the FOS/AP-1 pathway. Since fibrosis and inflammation are crucial in the progression of cardiac hypertrophy, heart failure, and diabetic cardiomyopathy, our results point to SIRT3 as a potential target for treating these diseases.


Assuntos
Fibrose/genética , Insuficiência Cardíaca/genética , Proteínas Proto-Oncogênicas c-fos/genética , Sirtuína 3/genética , Fator de Transcrição AP-1/genética , Animais , Fibrose/patologia , Coração , Insuficiência Cardíaca/patologia , Histonas/genética , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/genética , Processamento de Proteína Pós-Traducional/genética , Ratos
3.
PLoS One ; 11(11): e0166111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27851770

RESUMO

We have previously demonstrated that islet depolarization with 70 mM KCl opens Cx36 hemichannels and allows diffusion of small metabolites and cofactors through the ß-cell plasma membrane. We have investigated in this islet "permeabilized" model whether glycolytic and citric acid cycle intermediates stimulate insulin secretion and how it correlates with ATP production (islet content plus extracellular nucleotide accumulation). Glycolytic intermediates (10 mM) stimulated insulin secretion and ATP production similarly. However, they showed differential sensitivities to respiratory chain or enzyme inhibitors. Pyruvate showed a lower secretory capacity and less ATP production than phosphoenolpyruvate, implicating an important role for glycolytic generation of ATP. ATP production by glucose-6-phosphate was not sensitive to a pyruvate kinase inhibitor that effectively suppressed the phosphoenolpyruvate-induced secretory response and islet ATP rise. Strong suppression of both insulin secretion and ATP production induced by glucose-6-phosphate was caused by 10 µM antimycin A, implicating an important role for the glycerophosphate shuttle in transferring reducing equivalents to the mitochondria. Five citric acid cycle intermediates were investigated for their secretory and ATP production capacity (succinate, fumarate, malate, isocitrate and α-ketoglutarate at 5 mM, together with ADP and/or NADP+ to feed the NADPH re-oxidation cycles). The magnitude of the secretory response was very similar among the different mitochondrial metabolites but α-ketoglutarate showed a more sustained second phase of secretion. Gabaculine (1 mM, a GABA-transaminase inhibitor) suppressed the second phase of secretion and the ATP-production stimulated by α-ketoglutarate, supporting a role for the GABA shuttle in the control of glucose-induced insulin secretion. None of the other citric acid intermediates essayed showed any suppression of both insulin secretion or ATP-production by the presence of gabaculine. We propose that endogenous GABA metabolism in the "GABA-shunt" facilitates ATP production in the citric acid cycle for an optimal insulin secretion.


Assuntos
Glicólise/efeitos dos fármacos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Mitocôndrias/metabolismo , Cloreto de Potássio/farmacologia , Trifosfato de Adenosina/biossíntese , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácidos Cicloexanocarboxílicos/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Ratos Wistar
4.
PLoS One ; 10(10): e0140096, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26444014

RESUMO

Our previous work has demonstrated that islet depolarization with KCl opens connexin36 hemichannels in ß-cells of mouse pancreatic islets allowing the exchange of small metabolites with the extracellular medium. In this study, the opening of these hemichannels has been further characterized in rat islets and INS-1 cells. Taking advantage of hemicannels'opening, the uptake of extracellular ATP and its effect on insulin release were investigated. 70 mM KCl stimulated light emission by luciferin in dispersed rat islets cells transduced with the fire-fly luciferase gene: it was suppressed by 20 mM glucose and 50 µM mefloquine, a specific connexin36 inhibitor. Extracellular ATP was taken up or released by islets depolarized with 70 mM KCl at 5 mM glucose, depending on the external ATP concentration. 1 mM ATP restored the loss of ATP induced by the depolarization itself. ATP concentrations above 5 mM increased islet ATP content and the ATP/ADP ratio. No ATP uptake occurred in non-depolarized or KCl-depolarized islets simultaneously incubated with 50 µM mefloquine or 20 mM glucose. Extracellular ATP potentiated the secretory response induced by 70 mM KCl at 5 mM glucose in perifused rat islets: 5 mM ATP triggered a second phase of insulin release after the initial peak triggered by KCl-depolarization itself; at 10 mM, it increased both the initial, KCl-dependent, peak and stimulated a greater second phase of secretion than at 5 mM. These stimulatory effects of extracellular ATP were almost completely suppressed by 50 µM mefloquine. The magnitude of the second phase of insulin release due to 5 mM extracellular ATP was decreased by addition of 5 mM ADP (extracellular ATP/ADP ratio = 1). ATP acts independently of KATP channels closure and its intracellular concentration and its ATP/ADP ratio seems to regulate the magnitude of both the first (triggering) and second (amplifying) phases of glucose-induced insulin secretion.


Assuntos
Trifosfato de Adenosina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Cloreto de Potássio/metabolismo , Difosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Animais , Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Mefloquina/farmacologia , Permeabilidade , Ratos
5.
Am J Physiol Endocrinol Metab ; 306(12): E1354-66, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24735890

RESUMO

The existence of functional connexin36 (Cx36) hemichannels in ß-cells was investigated in pancreatic islets of rat and wild-type (Cx36(+/+)), monoallelic (Cx36(+/-)), and biallelic (Cx36(-/-)) knockout mice. Hemichannel opening by KCl depolarization was studied by measuring ATP release and changes of intracellular ATP (ADP). Cx36(+/+) islets lost ATP after depolarization with 70 mM KCl at 5 mM glucose; ATP loss was prevented by 8 and 20 mM glucose or 50 µM mefloquine (connexin inhibitor). ATP content was higher in Cx36(-/-) than Cx36(+/+) islets and was not decreased by KCl depolarization; Cx36(+/-) islets showed values between that of control and homozygous islets. Five minimolar extracellular ATP increased ATP content and ATP/ADP ratio and induced a biphasic insulin secretion in depolarized Cx36(+/+) and Cx36(+/-) but not Cx36(-/-) islets. Cx36 hemichannels expressed in oocytes opened upon depolarization of membrane potential, and their activation was inhibited by mefloquine and glucose (IC50 ∼8 mM). It is postulated that glucose-induced inhibition of Cx36 hemichannels in islet ß-cells might avoid depolarization-induced ATP loss, allowing an optimum increase of the ATP/ADP ratio by sugar metabolism and a biphasic stimulation of insulin secretion. Gradual suppression of glucose-induced insulin release in Cx36(+/-) and Cx36(-/-) islets confirms that Cx36 gap junction channels are necessary for a full secretory stimulation and might account for the glucose intolerance observed in mice with defective Cx36 expression. Mefloquine targeting of Cx36 on both gap junctions and hemichannels also suppresses glucose-stimulated secretion. By contrast, glucose stimulation of insulin secretion requires Cx36 hemichannels' closure but keeping gap junction channels opened.


Assuntos
Glicemia/metabolismo , Conexinas/antagonistas & inibidores , Intolerância à Glucose/metabolismo , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Regulação para Cima , Trifosfato de Adenosina/metabolismo , Animais , Glicemia/análise , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Intolerância à Glucose/sangue , Heterozigoto , Hiperglicemia/etiologia , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Técnicas de Cultura de Tecidos , Regulação para Cima/efeitos dos fármacos , Proteína delta-2 de Junções Comunicantes
6.
Biochem J ; 431(3): 381-9, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20695849

RESUMO

We have demonstrated recently that branched-chain α-keto acid stimulation of insulin secretion is dependent on islet GABA (γ-aminobutyric acid) metabolism: GABA transamination to succinic semialdehyde is increased by 2-oxoglutarate, generated in α-keto acid transamination to its corresponding α-amino acid. The present work was aimed at investigating whether glucose also promotes islet GABA metabolism and whether the latter contributes to the stimulation of insulin secretion. Glucose (20 mM) decreased both the content and release of islet GABA. Gabaculine (1 mM), a GABA transaminase inhibitor, partially suppressed the secretory response of rat perifused islets to 20 mM glucose at different L-glutamine concentrations (0, 1 and 10 mM), as well as the glucose-induced decrease in islet GABA. The drug also reduced islet ATP content and the ATP/ADP ratio at 20 mM glucose. Exogenous succinic semialdehyde induced a dose-dependent increase in islet GABA content by reversal of GABA transamination and a biphasic insulin secretion in the absence of glucose. It depolarized isolated ß-cells and triggered action potential firing, accompanied by a reduction of membrane currents through ATP-sensitive K(+) channels. The gene expression and enzyme activity of GABA transaminase were severalfold higher than that of 2-oxoglutarate dehydrogenase in islet homogenates. We conclude that, at high glucose concentrations, there is an increased diversion of glucose metabolism from the citric acid cycle into the 'GABA shunt'. Semialdehyde succinic acid is a cell-permeant 'GABA-shunt' metabolite that increases ATP and the ATP/ADP ratio, depolarizes ß-cells and stimulates insulin secretion. In summary, an increased islet GABA metabolism may trigger insulin secretion.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Secreção de Insulina , Masculino , Potenciais da Membrana , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA