Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Pediatr Obes ; 19(6): e13120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590200

RESUMO

Maternal obesity is a well-known risk factor for developing premature obesity, metabolic syndrome, cardiovascular disease and type 2 diabetes in the progeny. The development of white adipose tissue is a dynamic process that starts during prenatal life: fat depots laid down in utero are associated with the proportion of fat in children later on. How early this programming takes place is still unknown. However, recent evidence shows that mesenchymal stem cells (MSC), the embryonic adipocyte precursor cells, show signatures of the early setting of an adipogenic committed phenotype when exposed to maternal obesity. This review aims to present current findings on the cellular adaptations of MSCs from the offspring of women with obesity and how the metabolic environment of MSCs could affect the early commitment towards adipocytes. In conclusion, maternal obesity can induce early programming of fetal adipose tissue by conditioning MSCs. These cells have higher expression of adipogenic markers, altered insulin signalling and mitochondrial performance, compared to MSCs of neonates from lean pregnancies. Fetal MSCs imprinting by maternal obesity could help explain the increased risk of childhood obesity and development of further noncommunicable diseases.


Assuntos
Células-Tronco Mesenquimais , Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Obesidade Materna/metabolismo , Tecido Adiposo , Obesidade Infantil , Adipogenia/fisiologia , Recém-Nascido , Adipócitos
2.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108049

RESUMO

Fetal adaptations to harmful intrauterine environments due to pregnancy disorders such as preeclampsia (PE) can negatively program the offspring's metabolism, resulting in long-term metabolic changes. PE is characterized by increased circulating levels of sFLT1, placental dysfunction and fetal growth restriction (FGR). Here we examine the consequences of systemic human sFLT1 overexpression in transgenic PE/FGR mice on the offspring's metabolic phenotype. Histological and molecular analyses of fetal and offspring livers as well as examinations of offspring serum hormones were performed. At 18.5 dpc, sFLT1 overexpression resulted in growth-restricted fetuses with a reduced liver weight, combined with reduced hepatic glycogen storage and histological signs of hemorrhages and hepatocyte apoptosis. This was further associated with altered gene expression of the molecules involved in fatty acid and glucose/glycogen metabolism. In most analyzed features males were more affected than females. The postnatal follow-up revealed an increased weight gain of male PE offspring, and increased serum levels of Insulin and Leptin. This was associated with changes in hepatic gene expression regulating fatty acid and glucose metabolism in male PE offspring. To conclude, our results indicate that sFLT1-related PE/FGR in mice leads to altered fetal liver development, which might result in an adverse metabolic pre-programming of the offspring, specifically targeting males. This could be linked to the known sex differences seen in PE pregnancies in human.


Assuntos
Pré-Eclâmpsia , Humanos , Gravidez , Camundongos , Feminino , Masculino , Animais , Pré-Eclâmpsia/metabolismo , Placenta/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Feto/metabolismo , Camundongos Transgênicos , Aumento de Peso , Retardo do Crescimento Fetal/genética
3.
J Dev Orig Health Dis ; 14(1): 146-151, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35748176

RESUMO

Exposure to pregnancy complications, including preeclampsia (PE), has lifelong influences on offspring's health. We have previously reported that experimental PE, induced in mice by administration of adenoviral sFlt1 at gestational day 8.5 combined with LPS at day 10.5, results in symmetrical growth restriction in female and asymmetrical growth restriction in male offspring. Here, we characterize the molecular phenotype of the fetal brain and liver with respect to gene transcription and DNA methylation at the end of gestation.In fetal brain and liver, expression and DNA methylation of several key regulatory genes is altered by PE exposure, mostly independent of fetal sex. These alterations point toward a decreased gluconeogenesis in the liver and stimulated neurogenesis in the brain, potentially affecting long-term brain and liver function. The observed sex-specific growth restriction pattern is not reflected in the molecular data, showing that PE, rather than tissue growth, drives the molecular phenotype of PE-exposed offspring.


Assuntos
Metilação de DNA , Pré-Eclâmpsia , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Encéfalo/metabolismo , Expressão Gênica , Fígado/metabolismo , Pré-Eclâmpsia/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular
4.
Oxid Med Cell Longev ; 2022: 1070968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466095

RESUMO

Ovarian aging is associated with a decrease in fecundity. Increased oxidative stress of granulosa cells (GCs) is an important contributor. We thus asked whether there is an oxidative stress-related gene signature in GCs associated with ovarian aging. Public nonhuman primate (NHP) single-cell transcriptome was processed to identify GC cluster. Then, a GC signature for ovarian aging was established based on six oxidative stress-related differentially expressed genes (MAPK1, STK24, AREG, ATG7, ANXA1, and PON2). Receiver operating characteristic (ROC) analysis confirmed good discriminating capacity in both NHP single-cell and human bulk transcriptome datasets. Gene expression levels were investigated using qPCR in the human ovarian granulosa-like tumor cell line (KGN) and mouse GCs. In an oxidative stress model, KGN cells were treated with menadione (7.5 µM, 24 h) to induce oxidative stress, after which upregulation of MAPK1, STK24, ATG7, ANXA1, and PON2 and downregulation of AREG were observed (p < 0.05). In an aging model, KGN cells were continuously cultured for 3 months, leading to increased expressions of all genes (p < 0.05). In GCs of reproductively aged (8-month-old) Kunming mice, upregulated expression of Mapk1, Stk24, Atg7, and Pon2 and downregulated expression of Anxa1 and Areg were observed (p < 0.01). We therefore here identify a six-gene GC signature associated with oxidative stress and ovarian aging.


Assuntos
Células da Granulosa , Ovário , Feminino , Humanos , Camundongos , Animais , Lactente , Estresse Oxidativo/genética , Envelhecimento/genética , Vitamina K 3 , Proteínas Serina-Treonina Quinases
5.
Front Endocrinol (Lausanne) ; 13: 895489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046788

RESUMO

Background: Pre-diabetes precedes Diabetes Mellitus (DM) disease and is a critical period for hyperglycemia treatment, especially for menopausal women, considering all metabolic alterations due to hormonal changes. Recently, the literature has demonstrated the role of physical exercise in epigenetic reprogramming to modulate the gene expression patterns of metabolic conditions, such as hyperglycemia, and prevent DM development. In the present study, we hypothesized that physical exercise training could modify the epigenetic patterns of women with poor glycemic control. Methods: 48 post-menopause women aged 60.3 ± 4.5 years were divided according to their fasting blood glucose levels into two groups: Prediabetes Group, PG (n=24), and Normal Glucose Group, NGG (n=24). All participants performed 14 weeks of physical exercise three times a week. The Infinium Methylation EPIC BeadChip measured the participants' Different Methylated Regions (DMRs). Results: Before the intervention, the PG group had 12 DMRs compared to NGG. After the intervention, five DMRs remained different. Interestingly, when comparing the PG group before and after training, 118 DMRs were found. The enrichment analysis revealed that the genes were related to different biological functions such as energy metabolism, cell differentiation, and tumor suppression. Conclusion: Physical exercise is a relevant alternative in treating hyperglycemia and preventing DM in post-menopause women with poor glycemic control.


Assuntos
Diabetes Mellitus , Hiperglicemia , Estado Pré-Diabético , Exercício Físico , Feminino , Humanos , Menopausa/genética , Estado Pré-Diabético/genética , Estado Pré-Diabético/terapia
6.
J Dev Orig Health Dis ; 13(3): 378-389, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34325767

RESUMO

It is under debate how preferential perfusion of the brain (brain-sparing) in fetal growth restriction (FGR) relates to long-term neurodevelopmental outcome. Epigenetic modification of neurotrophic genes by altered fetal oxygenation may be involved. To explore this theory, we performed a follow-up study of 21 FGR children, in whom we prospectively measured the prenatal cerebroplacental ratio (CPR) with Doppler sonography. At 4 years of age, we tested their neurodevelopmental outcome using the Wechsler Preschool and Primary Scale of Intelligence, the Child Behavior Checklist, and the Behavior Rating Inventory of Executive Function. In addition, we collected their buccal DNA to determine the methylation status at predefined genetic regions within the genes hypoxia-inducible factor-1 alpha (HIF1A), vascular endothelial growth factor A (VEGFA), erythropoietin (EPO), EPO-receptor (EPOR), brain-derived neurotrophic factor (BDNF), and neurotrophic tyrosine kinase, receptor, type 2 (NTRK2) by pyrosequencing. We found that FGR children with fetal brain-sparing (CPR <1, n = 8) demonstrated a trend (0.05 < p < 0.1) toward hypermethylation of HIF1A and VEGFA at their hypoxia-response element (HRE) compared with FGR children without fetal brain-sparing. Moreover, in cases with fetal brain-sparing, we observed statistically significant hypermethylation at a binding site for cyclic adenosine monophophate response element binding protein (CREB) of BDNF promoter exon 4 and hypomethylation at an HRE located within the NTRK2 promoter (both p <0.05). Hypermethylation of VEGFA was associated with a poorer Performance Intelligence Quotient, while hypermethylation of BDNF was associated with better inhibitory self-control (both p <0.05). These results led us to formulate the hypothesis that early oxygen-dependent epigenetic alterations due to hemodynamic alterations in FGR may be associated with altered neurodevelopmental outcome in later life. We recommend further studies to test this hypothesis.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Retardo do Crescimento Fetal , Encéfalo/diagnóstico por imagem , Fator Neurotrófico Derivado do Encéfalo/genética , Comportamento Infantil , Pré-Escolar , Metilação de DNA , Feminino , Retardo do Crescimento Fetal/genética , Seguimentos , Humanos , Hipóxia , Gravidez , Fator A de Crescimento do Endotélio Vascular
7.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375250

RESUMO

Prenatal smoke exposure (PreSE) is a risk factor for nicotine dependence, which is further enhanced by postnatal smoke exposure (PostSE). One susceptibility gene to nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine in the liver. Higher CYP2A6 activity is associated with nicotine dependence and could be regulated through DNA methylation. In this study we investigated whether PostSE further impaired PreSE-induced effects on nicotine metabolism, along with Cyp2a5, orthologue of CYP2A6, mRNA expression and DNA methylation. Using a mouse model where prenatally smoke-exposed adult offspring were exposed to cigarette smoke for 3 months, enzyme activity, mRNA levels, and promoter methylation of hepatic Cyp2a5 were evaluated. We found that in male offspring, PostSE increased PreSE-induced cotinine levels and Cyp2a5 mRNA expression. In addition, both PostSE and PreSE changed Cyp2a5 DNA methylation in male groups. PreSE however decreased cotinine levels whereas it had no effect on Cyp2a5 mRNA expression or methylation. These adverse outcomes of PreSE and PostSE were most prominent in males. When considered in the context of the human health aspects, the combined effect of prenatal and adolescent smoke exposure could lead to an accelerated risk for nicotine dependence later in life.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Família 2 do Citocromo P450/metabolismo , Metilação de DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Metabólica , Nicotina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Fumaça/efeitos adversos , Animais , Animais Recém-Nascidos , Hidrocarboneto de Aril Hidroxilases/química , Hidrocarboneto de Aril Hidroxilases/genética , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Regiões Promotoras Genéticas
8.
Sci Rep ; 10(1): 19618, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184349

RESUMO

Gestational complications, including preeclampsia and gestational diabetes, have long-term adverse consequences for offspring's metabolic and cardiovascular health. A low-grade systemic inflammatory response is likely mediating this. Here, we examine the consequences of LPS-induced gestational inflammation on offspring's health in adulthood. LPS was administered to pregnant C57Bl/6J mice on gestational day 10.5. Maternal plasma metabolomics showed oxidative stress, remaining for at least 5 days after LPS administration, likely mediating the consequences for the offspring. From weaning on, all offspring was fed a control diet; from 12 to 24 weeks of age, half of the offspring received a western-style diet (WSD). The combination of LPS-exposure and WSD resulted in hyperphagia and increased body weight and body fat mass in the female offspring. This was accompanied by changes in glucose tolerance, leptin and insulin levels and gene expression in liver and adipose tissue. In the hypothalamus, expression of genes involved in food intake regulation was slightly changed. We speculate that altered food intake behaviour is a result of dysregulation of hypothalamic signalling. Our results add to understanding of how maternal inflammation can mediate long-term health consequences for the offspring. This is relevant to many gestational complications with a pro-inflammatory reaction in place.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hiperfagia/etiologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/efeitos adversos , Troca Materno-Fetal/fisiologia , Caracteres Sexuais , Aumento de Peso , Tecido Adiposo/metabolismo , Animais , Regulação do Apetite/genética , Feminino , Hipotálamo/fisiopatologia , Insulina/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Gravidez
9.
Epigenetics ; 15(12): 1370-1385, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32573327

RESUMO

Prenatal smoke exposure (PSE) is a risk factor for nicotine dependence. One susceptibility gene for nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine and nicotine clearance in the liver. Higher activity of the CYP2A6 enzyme is associated with nicotine dependence, but no research has addressed the PSE effects on the CYP2A6 gene or its mouse homologue Cyp2a5. We hypothesized that PSE affects Cyp2a5 promoter methylation, Cyp2a5 mRNA levels, and nicotine metabolism in offspring. We used a smoke-exposed pregnant mouse model. RNA, DNA, and microsomal protein were isolated from liver tissue of foetal, neonatal, and adult offspring. Enzyme activity, Cyp2a5 mRNA levels, and Cyp2a5 methylation status of six CpG sites within the promoter region were analysed via HPLC, RT-PCR, and bisulphite pyrosequencing. Our data show that PSE induced higher cotinine levels in livers of male neonatal and adult offspring compared to controls. PSE-induced cotinine levels in neonates correlated with Cyp2a5 mRNA expression and promoter methylation at CpG-7 and CpG+45. PSE increased methylation in almost all CpG sites in foetal offspring, and this effect persisted at CpG-74 in male neonatal and adult offspring. Our results indicate that male offspring of mothers which were exposed to cigarette smoke during pregnancy have a higher hepatic nicotine metabolism, which could be regulated by DNA methylation. Given the detected persistence into adulthood, extrapolation to the human situation suggests that sons born from smoking mothers could be more susceptible to nicotine dependence later in life.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Família 2 do Citocromo P450/genética , Metilação de DNA , Fígado/metabolismo , Nicotina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Ilhas de CpG , Feminino , Fígado/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1866(2): 165397, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30699363

RESUMO

Gestational diabetes mellitus (GDM) is a detrimental condition for human pregnancy associated with endothelial dysfunction and endothelial inflammation in the fetoplacental vasculature and leads to increased cardio-metabolic risk in the offspring. In the fetoplacental vasculature, GDM is associated with altered adenosine metabolism. Adenosine is an important vasoactive molecule and is an intermediary and final product of transmethylation reactions in the cell. Adenosine kinase is the major regulator of adenosine levels. Disruption of this enzyme is associated with alterations in methylation-dependent gene expression regulation mechanisms, which are associated with the fetal programming phenomenon. Here we propose that cellular and molecular alterations associated with GDM can dysregulate adenosine kinase leading to fetal programming in the fetoplacental vasculature. This can contribute to the cardio-metabolic long-term consequences observed in offspring after exposure to GDM.


Assuntos
Adenosina Quinase/metabolismo , Sistema Cardiovascular/metabolismo , Diabetes Gestacional/metabolismo , Desenvolvimento Fetal/fisiologia , Placenta/metabolismo , Adenosina/metabolismo , Adenosina Quinase/genética , Animais , Metilação de DNA , Diabetes Mellitus/metabolismo , Diabetes Gestacional/genética , Endotélio/metabolismo , Epigenômica , Feminino , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica , Humanos , Inflamação , Camundongos , Gravidez
11.
PLoS One ; 14(8): e0221972, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31469872

RESUMO

BACKGROUND: In Fetal Growth Restriction 'fetal programming' may take place via DNA methylation, which has implications for short-term and long-term health outcomes. Small-for-gestational age fetuses are considered fetal growth restricted, characterized by brain-sparing when fetal Doppler hemodynamics are abnormal, expressed as a cerebroplacental ratio (CPR) <1. We aimed to determine whether brain-sparing is associated with altered DNA methylation of selected genes. METHODS: We compared DNA methylation of six genes in 41 small-for-gestational age placentas with a normal or abnormal CPR. We selected EPO, HIF1A, VEGFA, LEP, PHLDA2, and DHCR24 for their role in angiogenesis, immunomodulation, and placental and fetal growth. DNA methylation was analyzed by pyrosequencing. RESULTS: Growth restricted fetuses with an abnormal CPR showed hypermethylation of the VEGFA gene at one CpG (VEGFA-309, p = .001) and an overall hypomethylation of the LEP gene, being significant at two CpGs (LEP-123, p = .049; LEP-51, p = .020). No differences in methylation were observed for the other genes. CONCLUSIONS: VEGFA and LEP genes are differentially methylated in placentas of small-for-gestational age fetuses with brain-sparing. Hypermethylation of VEGFA-309 in abnormal CPR-placentas could indicate successful compensatory mechanisms. Methylation of LEP-51 is known to suppress LEP expression. Hypomethylation in small-for-gestational age placentas with abnormal CPR may result in hyperleptinemia and predispose to leptin-resistance later in life.


Assuntos
Metilação de DNA , Leptina/genética , Placenta/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Adulto , Alelos , Ilhas de CpG , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Idade Gestacional , Humanos , Recém-Nascido Pequeno para a Idade Gestacional , Gravidez , Ultrassonografia Pré-Natal , Adulto Jovem
12.
Dis Model Mech ; 12(2)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30683649

RESUMO

Pre-eclampsia is a multifactorial pregnancy-associated disorder characterized by angiogenic dysbalance and systemic inflammation; however, animal models that combine these two pathophysiological conditions are missing. Here, we introduce a novel double-hit pre-eclampsia mouse model that mimics the complex multifactorial conditions present during pre-eclampsia and allows for the investigation of early consequences for the fetus. Adenoviral overexpression of soluble fms-like tyrosine kinase (sFlt-1) and lipopolysaccharide (LPS) administration at mid-gestation in pregnant mice resulted in hypertension and albuminuria comparable to that of the manifestation in humans. A metabolomics analysis revealed that pre-eclamptic dams have increased plasma concentrations of phosphadytilcholines. The fetuses of both sexes were growth restricted; however, in males a brain-sparing effect was seen as compensation for this growth restriction. According to the plasma metabolomics, male fetuses showed changes in amino acid metabolism, while female fetuses showed pronounced alterations in lipid metabolism. Our results show that combined exposure to sFlt-1 and LPS mimics the clinical symptoms of pre-eclampsia and affects fetal growth in a sex-specific manner, with accompanying metabolome changes.


Assuntos
Pré-Eclâmpsia/patologia , Animais , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/patologia , Regulação da Expressão Gênica no Desenvolvimento , Lipopolissacarídeos , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Metaboloma , Metabolômica , Camundongos Endogâmicos C57BL , Fosfatidilcolinas/sangue , Placenta/metabolismo , Placenta/patologia , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/metabolismo , Gravidez , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Epigenetics ; 12(12): 1076-1091, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29160127

RESUMO

The impact of prenatal smoke exposure (PSE) on DNA methylation has been demonstrated in blood samples from children of smoking mothers, but evidence for sex-dependent smoke-induced effects is limited. As the identified differentially methylated genes can be associated with developmental processes, and insulin-like growth factors (IGFs) play a critical role in prenatal tissue growth, we hypothesized that PSE induces fetal programming of Igf1r and Igf1. Using a mouse model of smoking during pregnancy, we show that PSE alters promoter methylation of Igf1r and Igf1 and deregulates their gene expression in lung and liver of fetal (E17.5) and neonatal (D3) mouse offspring. By further comparing female versus male, lung versus liver, or fetal versus neonatal time point, our results demonstrate that CpG site-specific aberrant methylation patterns sex-dependently vary per organ and time point. Moreover, PSE reduces gene expression of Igf1r and Igf1, dependent on organ, sex, and offspring's age. Our results indicate that PSE may be a source of organ-specific rather than general systemic fetal programming. This is exemplified here by gene promoter methylation and mRNA levels of Igf1r and Igf1, together with a sex- and organ-specific naturally established correlation of both parameters that is affected by prenatal smoke exposure. Moreover, the comparison of fetuses with neonates suggests a CpG site-dependent reversibility/persistence of PSE-induced differential methylation patterns.


Assuntos
Metilação de DNA , Fator de Crescimento Insulin-Like I/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Receptores de Somatomedina/genética , Fumar Tabaco/genética , Animais , Feminino , Fígado/embriologia , Fígado/metabolismo , Pulmão/embriologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Regiões Promotoras Genéticas , Receptores de Somatomedina/metabolismo , Fatores Sexuais
14.
J Cell Biochem ; 118(6): 1316-1329, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27859593

RESUMO

Since it is known that placental overexpression of the human anti-angiogenic molecule sFlt-1, the main candidate in the progression of preeclampsia, lead to intrauterine growth restriction (IUGR) in mice by lentiviral transduction of mouse blastocysts, we hypothesize that sFlt-1 influence placental morphology and physiology resulting in fetal IUGR. We therefore examined the effect of sFlt-1 on placental morphology and physiology at embryonic day 18.5 with histologic and morphometric analyses, transcript analyses, immunoblotting, and methylation studies. Interestingly, placental overexpression of sFlt-1 leads to IUGR in the fetus and results in lower placental weights. Moreover, we observed altered trophoblast differentiation with reduced expression of IGF2, resulting in a smaller placenta, a smaller labyrinth, and the loss of glycogen cells in the junctional zone. Changes in IGF2 are accompanied by small changes in its DNA methylation, whereas overall DNA methylation is unaffected. In addition, the expression of placental nutrient transporters, such as the glucose diffusion channel Cx26, is decreased. In contrast, the expression of the fatty acid transporter CD36 and the cholesterol transporter ABCA1 is significantly increased. In conclusion, placental sFlt-1 overexpression resulted in a reduction in the differentiation of the spongiotrophoblast into glycogen cells. These findings of a reduced exchange area of the labyrinth and glycogen stores, as well as decreased expression of glucose transporter, could contribute to the intrauterine growth restriction phenotype. All of these factors change the intrauterine availability of nutrients. Thus, we speculate that the alterations triggered by increased anti-angiogenesis strongly affect fetal outcome and programming. J. Cell. Biochem. 118: 1316-1329, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Retardo do Crescimento Fetal/genética , Placenta/patologia , Trofoblastos/citologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Diferenciação Celular , Conexina 26 , Conexinas/genética , Conexinas/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Epigênese Genética , Feminino , Retardo do Crescimento Fetal/patologia , Glicogênio/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismo
15.
Biol Reprod ; 94(2): 37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26740591

RESUMO

Variations in DNA methylation levels in the placenta are thought to influence gene expression and are associated with complications of pregnancy, like fetal growth restriction (FGR). The most important cause for FGR is placental dysfunction. Here, we examined whether changes in DNA methylation, followed by gene expression changes, are mechanistically involved in the etiology of FGR. In this retrospective case-control study, we examined the association between small-for-gestational-age (SGA) children and both DNA methylation and gene expression levels of the genes WNT2, IGF2/H19, SERPINA3, HERVWE1, and PPARG in first-trimester placental tissue. We also examined the repetitive element LINE-1. These candidate genes have been reported in the literature to be associated with SGA. We used first-trimester placental tissue from chorionic villus biopsies. A total of 35 SGA children (with a birth weight below the 10th percentile) were matched to 70 controls based on their gestational age. DNA methylation levels were analyzed by pyrosequencing and mRNA levels were analyzed by real-time PCR. None of the average DNA methylation levels, measured for each gene, showed a significant difference between SGA placental tissue compared to control tissue. However, hypermethylation of WNT2 was detected on two CpG positions in SGA. This was not associated with changes in gene expression. Apart from two CpG positions of the WNT2 gene, in early placenta samples, no evident changes in DNA methylation or expression were found. This indicates that the already reported changes in term placenta are not present in the early placenta, and therefore must arise after the first trimester.


Assuntos
Metilação de DNA , Retardo do Crescimento Fetal/metabolismo , Placenta/metabolismo , Primeiro Trimestre da Gravidez/metabolismo , Estudos de Casos e Controles , Feminino , Retardo do Crescimento Fetal/genética , Humanos , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Gravidez , Primeiro Trimestre da Gravidez/genética , Estudos Retrospectivos , Serpinas/genética , Serpinas/metabolismo , Proteína Wnt2/genética , Proteína Wnt2/metabolismo
16.
Epigenetics ; 10(8): 671-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098813

RESUMO

Insights on active DNA demethylation disproved the original assumption that DNA methylation is a stable epigenetic modification. Interestingly, mammalian DNA methyltransferases 3A and 3B (DNMT-3A and -3B) have also been reported to induce active DNA demethylation, in addition to their well-known function in catalyzing methylation. In situations of extremely low levels of S-adenosyl methionine (SAM), DNMT-3A and -3B might demethylate C-5 methyl cytosine (5mC) via deamination to thymine, which is subsequently replaced by an unmodified cytosine through the base excision repair (BER) pathway. Alternatively, 5mC when converted to 5- hydroxymethylcytosine (5hmC) by TET enzymes, might be further modified to an unmodified cytosine by DNMT-3A and -3B under oxidized redox conditions, although exact pathways are yet to be elucidated. Interestingly, even direct conversion of 5mC to cytosine might be catalyzed by DNMTs. Here, we summarize the evidence on the DNA dehydroxymethylase and demethylase activity of DNMT-3A and -3B. Although physiological relevance needs to be demonstrated, the current indications on the 5mC- and 5hmC-modifying activities of de novo DNA C-5 methyltransferases shed a new light on these enzymes. Despite the extreme circumstances required for such unexpected reactions to occur, we here put forward that the chromatin microenvironment can be locally exposed to extreme conditions, and hypothesize that such waves of extremes allow enzymes to act in differential ways.


Assuntos
Cromatina/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Reparo do DNA/genética , Epigênese Genética , Regulação da Expressão Gênica , Humanos , S-Adenosilmetionina/genética , DNA Metiltransferase 3B
17.
J Clin Invest ; 125(4): 1726-38, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25774501

RESUMO

Intrauterine growth restriction (IUGR) affects up to 10% of pregnancies in Western societies. IUGR is a strong predictor of reduced short-term neonatal survival and impairs long-term health in children. Placental insufficiency is often associated with IUGR; however, the molecular mechanisms involved in the pathogenesis of placental insufficiency and IUGR are largely unknown. Here, we developed a mouse model of fetal-growth restriction and placental insufficiency that is induced by a midgestational stress challenge. Compared with control animals, pregnant dams subjected to gestational stress exhibited reduced progesterone levels and placental heme oxygenase 1 (Hmox1) expression and increased methylation at distinct regions of the placental Hmox1 promoter. These stress-triggered changes were accompanied by an altered CD8+ T cell response, as evidenced by a reduction of tolerogenic CD8+CD122+ T cells and an increase of cytotoxic CD8+ T cells. Using progesterone receptor- or Hmox1-deficient mice, we identified progesterone as an upstream modulator of placental Hmox1 expression. Supplementation of progesterone or depletion of CD8+ T cells revealed that progesterone suppresses CD8+ T cell cytotoxicity, whereas the generation of CD8+CD122+ T cells is supported by Hmox1 and ameliorates fetal-growth restriction in Hmox1 deficiency. These observations in mice could promote the identification of pregnancies at risk for IUGR and the generation of clinical interventional strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Desenvolvimento Fetal/fisiologia , Retardo do Crescimento Fetal/prevenção & controle , Heme Oxigenase-1/fisiologia , Proteínas de Membrana/fisiologia , Placenta/imunologia , Insuficiência Placentária/imunologia , Complicações na Gravidez/imunologia , Progesterona/fisiologia , Estresse Psicológico/imunologia , Animais , Metilação de DNA , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Retardo do Crescimento Fetal/imunologia , Feto/imunologia , Feto/patologia , Heme Oxigenase-1/biossíntese , Heme Oxigenase-1/genética , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Ruído/efeitos adversos , Placenta/metabolismo , Circulação Placentária , Insuficiência Placentária/etiologia , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/psicologia , Progesterona/biossíntese , Progesterona/uso terapêutico , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Estresse Psicológico/genética
18.
Biol Sex Differ ; 5: 11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25243059

RESUMO

BACKGROUND: There is increasing appreciation for sexually dimorphic effects, but the molecular mechanisms underlying these effects are only partially understood. In the present study, we explored transcriptomics and epigenetic differences in the small intestine and colon of prepubescent male and female mice. In addition, the microbiota composition of the colonic luminal content has been examined. METHODS: At postnatal day 14, male and female C57BL/6 mice were sacrificed and the small intestine, colon and content of luminal colon were isolated. Gene expression of both segments of the intestine was analysed by microarray analysis. DNA methylation of the promoter regions of selected sexually dimorphic genes was examined by pyrosequencing. Composition of the microbiota was explored by deep sequencing. RESULTS: Sexually dimorphic genes were observed in both segments of the intestine of 2-week-old mouse pups, with a stronger effect in the small intestine. Amongst the total of 349 genes displaying a sexually dimorphic effect in the small intestine and/or colon, several candidates exhibited a previously established function in the intestine (i.e. Nts, Nucb2, Alox5ap and Retnlγ). In addition, differential expression of genes linked to intestinal bowel disease (i.e. Ccr3, Ccl11 and Tnfr) and colorectal cancer development (i.e. Wt1 and Mmp25) was observed between males and females. Amongst the genes displaying significant sexually dimorphic expression, nine genes were histone-modifying enzymes, suggesting that epigenetic mechanisms might be a potential underlying regulatory mechanism. However, our results reveal no significant changes in DNA methylation of analysed CpGs within the selected differentially expressed genes. With respect to the bacterial community composition in the colon, a dominant effect of litter origin was found but no significant sex effect was detected. However, a sex effect on the dominance of specific taxa was observed. CONCLUSIONS: This study reveals molecular dissimilarities between males and females in the small intestine and colon of prepubescent mice, which might underlie differences in physiological functioning and in disease predisposition in the two sexes.

19.
Pharmacogenomics ; 15(7): 1029-41, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24956255

RESUMO

One of the ongoing issues in perinatal medicine is the risk of birth defects associated with maternal drug use. The teratogenic effect of a drug depends, apart from other factors, on the exposition of the fetus to the drug. Transporter proteins are known to be involved in the pharmacokinetics of drugs and have an effect on drug level and fetal drug exposure. This condition may subsequently alter the risk of teratogenicity, which occurs in a dose-dependent manner. This review focuses on the clinically important polymorphisms of transporter proteins and their effects on the mRNA and protein expression in placental tissue. We also propose a novel approach on how the different genotypes of the polymorphism can be translated into phenotypes to facilitate genetic association studies. The last section looks into the recent studies exploring the association between P-glycoprotein polymorphisms and the risk of fetal birth defects associated with medication use during pregnancy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Anormalidades Induzidas por Medicamentos/genética , Anormalidades Congênitas/genética , Farmacogenética , Anormalidades Induzidas por Medicamentos/patologia , Anormalidades Congênitas/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Recém-Nascido , Placenta/efeitos dos fármacos , Gravidez
20.
Support Care Cancer ; 21(3): 863-71, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23010959

RESUMO

BACKGROUND: Patients with chemotherapy-induced gastrointestinal mucositis often suffer from weight loss. It is not well known how to enterally feed mucositis patients, potentially experiencing malabsorption. Recently, we showed in a rat model of methotrexate (MTX)-induced mucositis that intestinal absorption of glucose in trace amounts is still intact. We now determined the quantitative capacity to absorb glucose in rats with mucositis, relative to controls. METHODS: We administered a physiologically relevant amount of [1-(13)C]glucose-enriched glucose (meal size) as a bolus by oral gavage (2 g/kg once) or continuously by intraduodenal infusion (±1.9 g/(kg·h) for 5 h) to rats with MTX-induced mucositis and controls. Blood [1-(13)C]glucose concentrations were determined during the experimental period. To calculate the quantitative absorptive capacity, Steele's one-compartment model, including simultaneous intravenous infusion of [6,6-(2)H(2)]glucose, was used. After the experiment, jejunal histology and plasma citrulline concentrations were assessed. RESULTS: MTX-induced mucositis was confirmed by a reduction in villus length and plasma citrulline (both -57%, relative to controls, P < 0.01). When glucose was administered as a bolus, MTX-treated rats only absorbed 15% of administered glucose, compared with 85% in controls (medians, P < 0.01). Upon continuous intraduodenal glucose infusion, the median absorptive capacity for glucose in MTX-treated rats did not differ from controls (80 versus 93% of administered glucose respectively, P = 0.06). However, glucose absorption differed substantially between individual MTX-treated rats (range, 21-95%), which correlated poorly with villus length (rho = 0.54, P = 0.030) and plasma citrulline (rho = 0.56, P = 0.024). CONCLUSION: Continuous enteral administration can almost completely overcome the reduced absorptive capacity for glucose in rats with mucositis.


Assuntos
Nutrição Enteral/métodos , Glucose/metabolismo , Metotrexato/toxicidade , Mucosite/patologia , Animais , Antimetabólitos Antineoplásicos/toxicidade , Citrulina/sangue , Glucose/administração & dosagem , Absorção Intestinal , Mucosa Intestinal/patologia , Masculino , Mucosite/induzido quimicamente , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA