Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Horm Res Paediatr ; 97(2): 203-210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37611564

RESUMO

INTRODUCTION: The SALL4 gene encodes a transcription factor that is essential for early embryonic cellular differentiation of the epiblast and primitive endoderm. It is required for the development of neural tissue, kidney, heart, and limbs. Pathogenic SALL4 variants cause Duane-radial ray syndrome (Okihiro syndrome), acro-renal-ocular syndrome, and Holt-Oram syndrome. We report a family with vertical transmission of a SALL4 pathogenic variant leading to radial hypoplasia and kidney dystopia in several generations with additional growth hormone deficiency (GHD) in the proband. CASE PRESENTATION: Our male proband was born at the 39th week of gestation. He was born small for gestational age (SGA; birth weight 2,550 g, -2.2 SDS; length 47 cm, -2.0 SDS). He had bilateral asymmetrical radial ray malformation (consisting of radial hypoplasia, ulnar flexure, and bilateral aplasia of the thumb) and pelvic kidney dystopia, but no cardiac malformations, clubfoot, ocular coloboma, or Duane anomaly. He was examined for progressive short stature at the age of 3.9 years, where his IGF-1 was 68 µg/L (-1.0 SD), and growth hormone (GH) after stimulation 6.2 µg/L. Other pituitary hormones were normal. A brain CT revealed normal morphology of the cerebral midline and the pituitary. He had a dental anomaly - a central mandibular ectopic canine. MRI could not be done due to the presence of metal after multiple corrective plastic surgeries of his hands. His mother's and father's heights are 152.3 cm (-2.4 SD) and 177.8 cm (-0.4 SD), respectively. His father has a milder malformation of the forearm. The affected paternal grandfather (height 164 cm; -2.3 SD) has a radial ray defect with missing opposition of the thumb. The family reports a similar phenotype of radial dysplasia in the paternal grandfather's mother. The proband started GH therapy at age 6.5 years when his height was 109 cm (-2.8 SDS) and he experienced catch-up growth as expected in GHD. Puberty started spontaneously at the age of 12.5 years. At age 13, his height was 158.7 cm (-0.2 SDS). Whole-exome sequencing revealed a nonsense variant in the SALL4 gene c.1717C>T (p.Arg573Ter) in the proband, his father, and paternal grandfather. CONCLUSION: This is the first observation of a patient with a congenital upper limb defect due to a pathogenic SALL4 variant who has isolated GHD with no apparent cerebral or facial midline anomaly and has been successfully treated with growth hormone.


Assuntos
Síndrome da Retração Ocular , Hormônio do Crescimento Humano , Hipopituitarismo , Pré-Escolar , Humanos , Masculino , Síndrome da Retração Ocular/genética , Síndrome da Retração Ocular/patologia , Hipopituitarismo/genética , Rim/patologia , Fenótipo , Fatores de Transcrição/genética , Extremidade Superior/patologia , Adulto
2.
J Clin Endocrinol Metab ; 106(6): 1742-1749, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33570564

RESUMO

CONTEXT: Collagens are the most abundant proteins in the human body. In a growth plate, collagen types II, IX, X, and XI are present. Defects in collagen genes cause heterogeneous syndromic disorders frequently associated with short stature. Less is known about oligosymptomatic collagenopathies. OBJECTIVE: This work aims to evaluate the frequency of collagenopathies in familial short stature (FSS) children and to describe their phenotype, including growth hormone (GH) treatment response. METHODS: Eighty-seven FSS children (pretreatment height ≤ -2 SD both in the patient and his or her shorter parent) treated with GH were included in the study. Next-generation sequencing was performed to search for variants in the COL2A1, COL9A1, COL9A2, COL9A3, COL10A1, COL11A1, and COL11A2 genes. The results were evaluated using American College of Medical Genetics and Genomics guidelines. The GH treatment response of affected children was retrospectively evaluated. RESULTS: A likely pathogenic variant in the collagen gene was found in 10 of 87 (11.5%) children. Detailed examination described mild asymmetry with shorter limbs and mild bone dysplasia signs in 2 of 10 and 4 of 10 affected children, respectively. Their growth velocity improved from a median of 5.3 cm/year to 8.7 cm/year after 1 year of treatment. Their height improved from a median of -3.1 SD to -2.6 SD and to -2.2 SD after 1 and 3 years of therapy, respectively. The final height reached by 4 of 10 children differed by -0.67 to +1.0 SD and -0.45 to +0.5 SD compared to their pretreatment height and their affected untreated parent's height, respectively. CONCLUSION: Oligosymptomatic collagenopathies are a frequent cause of FSS. The short-term response to GH treatment is promising.


Assuntos
Colágeno/genética , Transtornos do Crescimento , Lâmina de Crescimento/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Colágeno/deficiência , Colágeno Tipo XI/genética , República Tcheca/epidemiologia , Bases de Dados Factuais , Feminino , Estudos de Associação Genética , Transtornos do Crescimento/tratamento farmacológico , Transtornos do Crescimento/epidemiologia , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/metabolismo , Hormônio do Crescimento Humano/deficiência , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Masculino , Fenótipo , Estudos Retrospectivos , Adulto Jovem
3.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31990356

RESUMO

CONTEXT: The C-type natriuretic peptide receptor encoded by the NPR2 gene is a paracrine regulator of the growth plate; heterozygous NPR2 variants cause short stature with possible presence of different signs of bone dysplasia. To date, the effect of growth hormone (GH) treatment has been described in a few individuals with NPR2 gene variants with inconsistent results. OBJECTIVES: To identify NPR2 gene variants among children with familial short stature (FSS) and to describe their phenotype, including GH treatment response. DESIGN, SETTINGS AND PATIENTS: Out of 747 patients with short stature treated with GH in a single center, 87 with FSS met the inclusion criteria (pretreatment height ≤ -2 standard deviation in both the patient and the shorter parent, unknown genetic etiology). Next-generation sequencing methods were performed to search for NPR2 gene variants. The results were evaluated using the American College of Medical Genetics and Genomics guidelines. The GH treatment response (growth velocity improvement and height standard deviation score development over the first 5 years of treatment) was evaluated. RESULTS: In 5/87 children (5.7%), a (likely) pathogenic variant in the NPR2 gene was identified (p.Ile558Thr [in 2], p.Arg205*, p.Arg557His, p.Ser603Thr). Two children had disproportionate short-limbed short stature, 1 a dysplastic 5th finger phalanx. The growth velocity in the first year of GH treatment accelerated by 3.6 to 4.2 cm/year; the height improved by 1.2 to 1.8 SD over 5 years of treatment. CONCLUSIONS: NPR2 gene variants cause FSS in a significant proportion of children. Their GH treatment response is promising. Studies including final height data are necessary to assess the long-term efficacy of this therapy.


Assuntos
Estatura/genética , Nanismo/tratamento farmacológico , Nanismo/genética , Hormônio do Crescimento Humano/administração & dosagem , Polimorfismo de Nucleotídeo Único , Receptores do Fator Natriurético Atrial/genética , Adolescente , Adulto , Biomarcadores/análise , Estatura/efeitos dos fármacos , Criança , Pré-Escolar , Estudos de Coortes , Nanismo/patologia , Feminino , Seguimentos , Humanos , Lactente , Masculino , Fenótipo , Prognóstico , Adulto Jovem
4.
Pediatr Endocrinol Rev ; 16(1): 171-177, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30371035

RESUMO

Overgrowth syndromes are rare genetic disorders characterized by excessive pre- and postnatal growth accompanied by dysmorphic features and developmental disorders. In addition to other health hazards, the life expectancy of affected children may be compromised due to an increased risk of developing tumors. To demonstrate the need for early recognition, correct diagnostic evaluation and adequate follow-up, we present a family with recurrent Simpson-Golabi-Behmel syndrome (SGBS). SGBS is a X-linked neonatal overgrowth syndrome caused by mutations in the GPC3 or GPC4 genes. All three affected males manifested with congenital diaphragmatic hernia. When fetal overgrowth and congenital diaphragmatic hernia co-occur, the choice for a possible cause is limited among SGBS, Marfan syndrome and Pallister-Killian syndrome. Their different phenotypes allow clinical assessment and correct diagnosis in most cases and should be followed by genetic testing. Regular oncologic screening aimed towards early recognition of malignant tumors may improve long-term outcomes in SGBS as well as in all other overgrowth syndromes.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Gigantismo , Arritmias Cardíacas , Glipicanas , Cardiopatias Congênitas , Humanos , Recém-Nascido , Deficiência Intelectual , Masculino
5.
Cas Lek Cesk ; 156(5): 233-240, 2017.
Artigo em Tcheco | MEDLINE | ID: mdl-28992707

RESUMO

Novel genetic findings allow to more reliably elucidate the aetiology and pathogenesis of overgrowth syndromes in children and in adults. The relatively prevalent overgrowth syndromes in foetuses and neonates include Beckwith-Wiedemann (BWS) and Sotos syndromes; in addition, several rare conditions may occur e.g. Simpson-Golabi-Behmel and Weaver syndromes. These syndromes are not connected with overproduction of growth hormone. Their carriers are at risk of hypoglycaemia (in BWS), of congenital malformations and of childhood tumours. Targeted oncologic screening may improve the outcomes. Despite rapid growth even postnatally, the final height is mostly normal. In childhood and adolescence, the increased growth velocity results from hormonal overproduction - of precocious production of sexual hormones, hyperthyroidism, or of growth hormone overproduction due to pituitary adenoma that may lead to gigantism or acrogigantism and may be familiar (familiar isolated pituitary adenoma; FIPA). In 15-25 % of affected families, FIPA is caused by autosomal dominantly inherited mutations of AIP gene encoding a tumour suppressor protein named AIP (aryl hydrocarbon receptor-interacting protein). X-linked acrogigantism (X-LAG) is due to GPR101 gene mutations or microduplications of Xq26 chromosomal region. GPR101 encodes G-protein coupled receptor with unknown ligand. X-LAG is associated with recurrent and highly-penetrant pituitary macroadenomas. Mutations of additional at least 10 genes may lead to pituitary tumour with growth hormone overproduction. Gigantism in adults results from untreated or insufficiently treated pituitary adenoma in childhood. Some of the well-known current or past giants were found to carry pathogenic genetic variants of GPR101 or AIP.


Assuntos
Acromegalia , Adenoma , Gigantismo , Neoplasias Hipofisárias , Acromegalia/genética , Adenoma/genética , Adolescente , Adulto , Criança , Gigantismo/genética , Humanos , Mutação , Fenótipo , Neoplasias Hipofisárias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA