Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307625

RESUMO

Regulation of host miRNA expression is a contested node that controls the host immune response to mycobacterial infection. The host must counter subversive efforts of pathogenic mycobacteria to launch a protective immune response. Here, we examine the role of miR-126 in the zebrafish-Mycobacterium marinum infection model and identify a protective role for infection-induced miR-126 through multiple effector pathways. We identified a putative link between miR-126 and the tsc1a and cxcl12a/ccl2/ccr2 signalling axes resulting in the suppression of non-tnfa expressing macrophage accumulation at early M. marinum granulomas. Mechanistically, we found a detrimental effect of tsc1a expression that renders zebrafish embryos susceptible to higher bacterial burden and increased cell death via mTOR inhibition. We found that macrophage recruitment driven by the cxcl12a/ccl2/ccr2 signalling axis was at the expense of the recruitment of classically activated tnfa-expressing macrophages and increased cell death around granulomas. Together, our results delineate putative pathways by which infection-induced miR-126 may shape an effective immune response to M. marinum infection in zebrafish embryos.


Assuntos
Quimiocina CXCL12 , MicroRNAs , Infecções por Mycobacterium não Tuberculosas , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas de Peixe-Zebra , Animais , Granuloma/genética , Macrófagos , MicroRNAs/genética , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Peixe-Zebra , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Quimiocina CXCL12/metabolismo , Proteínas de Peixe-Zebra/metabolismo
2.
Sci Rep ; 12(1): 9681, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690602

RESUMO

Pathogenic mycobacteria including Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, manipulate host macrophages to persist and cause disease. In mycobacterial infection, highly plastic macrophages, shift between inflammatory M1 and permissive M2 phenotypes which alter the disease outcome and allow bacteria to survive intracellularly. Here we examine the impact of MAP infection on polarised macrophages and how increased lipid availability alters macrophage phenotype and bacterial persistence. Further, we assess if host microRNA (miRNA) are sensitive to macrophage polarisation state and how MAP can drive their expression to overcome innate responses. Using in vitro MAP infection, we find that increasing lipid availability through supplementing culture media with exogenous lipid increases cellular nitric oxide production. Lipid-associated miRs -19a, -129, -24, and -24-3p are differentially expressed following macrophage polarisation and lipid supplementation and are further regulated during MAP infection. Collectively, our results highlight the importance of host lipid metabolism in MAP infection and demonstrate control of miRNA expression by MAP to favour intracellular persistence.


Assuntos
MicroRNAs , Infecções por Mycobacterium , Mycobacterium avium subsp. paratuberculosis , Animais , Metabolismo dos Lipídeos , Lipídeos , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infecções por Mycobacterium/metabolismo
3.
PLoS Pathog ; 17(4): e1009186, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826679

RESUMO

Pathogenic mycobacteria actively dysregulate protective host immune signalling pathways during infection to drive the formation of permissive granuloma microenvironments. Dynamic regulation of host microRNA (miRNA) expression is a conserved feature of mycobacterial infections across host-pathogen pairings. Here we examine the role of miR-206 in the zebrafish model of Mycobacterium marinum infection, which allows investigation of the early stages of granuloma formation. We find miR-206 is upregulated following infection by pathogenic M. marinum and that antagomir-mediated knockdown of miR-206 is protective against infection. We observed striking upregulation of cxcl12a and cxcr4b in infected miR-206 knockdown zebrafish embryos and live imaging revealed enhanced recruitment of neutrophils to sites of infection. We used CRISPR/Cas9-mediated knockdown of cxcl12a and cxcr4b expression and AMD3100 inhibition of Cxcr4 to show that the enhanced neutrophil response and reduced bacterial burden caused by miR-206 knockdown was dependent on the Cxcl12/Cxcr4 signalling axis. Together, our data illustrate a pathway through which pathogenic mycobacteria induce host miR-206 expression to suppress Cxcl12/Cxcr4 signalling and prevent protective neutrophil recruitment to granulomas.


Assuntos
Quimiocina CXCL12/metabolismo , MicroRNAs/genética , Infiltração de Neutrófilos/imunologia , Receptores CXCR4/metabolismo , Animais , Quimiocina CXCL12/imunologia , Técnicas de Silenciamento de Genes/métodos , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium marinum/metabolismo , Receptores CXCR4/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Peixe-Zebra/imunologia
4.
J Neuroimmunol ; 341: 577186, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058174

RESUMO

Experimental autoimmune neuritis (EAN) induced by peripheral nerve myelin (PNM) is self-limiting and re-immunization with PNM does not re-activate disease. This study showed inhibition of EAN by CD4+CD25+T cells both from sensitized hosts or from naïve hosts after ex-vivo activation by PNM and rIL-2. Transfer of naïve CD4+CD25+T cells has no effect on EAN, nor did naïve CD4+CD25+T cells activated with rIL-2 and renal tubular antigen. Culture of naive CD4+CD25+Treg with rIL-2 and PNM induced mRNA for the IFN-gamma receptor. We showed naïve CD4+CD25+T cells activated by specific auto-antigen and rIL-2 produced more potent antigen-specific Treg that may have therapeutic potential.


Assuntos
Autoantígenos/imunologia , Imunoterapia Adotiva , Interleucina-2/farmacologia , Neurite Autoimune Experimental/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD4/análise , Células Cultivadas , Convalescença , Feminino , Subunidade alfa de Receptor de Interleucina-2/análise , Ativação Linfocitária/efeitos dos fármacos , Bainha de Mielina/imunologia , Neurite Autoimune Experimental/prevenção & controle , Ratos , Ratos Endogâmicos Lew , Proteínas Recombinantes/farmacologia , Recidiva , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T Reguladores/transplante
5.
Microb Pathog ; 130: 44-53, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30831227

RESUMO

Johne's disease is a chronic wasting disease of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Closely related pathogenic mycobacteria such as M. tuberculosis are capable of altering host lipid metabolism, highlighting the need to explore the role of lipid metabolism contributing to intracellular survival. This study aimed to identify whether MAP is able to manipulate host lipid metabolic pathways and accumulate host cholesterol during early infection. Macrophages were exposed to four different MAP strains and non-pathogenic M. phlei for up to 72 h, with changes to lipid metabolism examined using fluorescent microscopy and gene expression. MAP-infected macrophages displayed strain-dependent differences to intracellular cholesterol levels during early infection, however showed similarly increased intracellular cholesterol at later timepoints. Gene expression revealed that MAP strains similarly activate the host immune response in a conserved manner compared to M. phlei. MAP significantly upregulated host genes associated with lipid efflux and endocytosis. Moreover, lipid biosynthesis genes were differentially regulated in a strain-dependent manner following MAP infection. Collectively, these results demonstrate that MAP manipulates host lipid metabolism during early infection, however the extent of these modulations are strain-dependent. These findings reflect a conserved pathway contributing to intracellular MAP survival.


Assuntos
Colesterol/análise , Interações Hospedeiro-Patógeno , Metabolismo dos Lipídeos , Macrófagos/química , Macrófagos/microbiologia , Mycobacterium avium subsp. paratuberculosis/crescimento & desenvolvimento , Mycobacterium avium subsp. paratuberculosis/metabolismo , Animais , Endocitose , Perfilação da Expressão Gênica , Camundongos , Microscopia de Fluorescência , Células RAW 264.7
6.
Pathog Dis ; 76(3)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718267

RESUMO

Experimental trials in the natural host are essential for development and screening of effective vaccines. For chronic diseases of livestock such as paratuberculosis, these can be lengthy and costly in nature. An alternative is to screen vaccines in vitro; however, previous studies have found that vaccine success in vitro in existing screening assays does not translate to in vivo efficacy. To overcome these issues, we have developed a system that combines both in vivo and in vitro aspects. We hypothesise that the effectiveness of vaccine-induced immune responses mounted in vivo could be gauged by assessing the ability of immune cells to 'control' an in vitro infection. Monocytes from Merino wethers (n = 45) were infected with Mycobacterium avium subspecies paratuberculosis (MAP) in vitro, cultured with autologous lymphocytes and remaining viable intracellular MAP was quantified. Cells from MAP exposed sheep had a higher capacity to kill intracellular MAP compared to non-exposed controls (P = 0.002). Importantly, cells from MAP exposed uninfected sheep had a greater capacity to kill intracellular MAP compared to vaccinated animals that were infected (ineffective vaccination), indicating that this in vitro assay has the potential to gauge actual protectiveness, or lack thereof, of a vaccine.


Assuntos
Imunidade Adaptativa , Citotoxicidade Imunológica , Imunoensaio , Linfócitos/imunologia , Monócitos/imunologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Castração , Técnicas de Cocultura , Contagem de Colônia Microbiana , Memória Imunológica , Linfócitos/citologia , Masculino , Monócitos/microbiologia , Mycobacterium avium subsp. paratuberculosis/crescimento & desenvolvimento , Paratuberculose/imunologia , Paratuberculose/microbiologia , Paratuberculose/prevenção & controle , Ovinos , Potência de Vacina
7.
Vet Microbiol ; 219: 53-62, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29778205

RESUMO

Johne's disease (JD) or paratuberculosis is an economically significant, chronic enteropathy of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Experimental models of JD in cattle are logistically challenging due to the need for long term monitoring, because the clinical disease can take years to manifest. Three trials were undertaken, the largest involving 20 cattle exposed orally to a low dose of C strain MAP and 10 controls studied for 4.75 years. Frequent blood and faecal sampling was used to monitor immunological and infection parameters, and intestinal biopsies were performed at two time points during the subclinical disease phase. Although clinical disease was not seen, there was evidence of infection in 35% of the animals and at necropsy 10% had histopathological lesions consistent with JD, similar to the proportions expected in naturally infected herds. Faecal shedding occurred in two distinct phases: firstly there was intermittent shedding <∼9 months post-exposure that did not correlate with disease outcomes; secondly, in a smaller cohort of animals, this was followed by more consistent shedding of increasing quantities of MAP, associated with intestinal pathology. There was evidence of regression of histopathological lesions in the ileum of one animal, which therefore had apparently recovered from the disease. Both cattle with histopathological lesions of paratuberculosis at necropsy had low MAP-specific interferon-gamma responses at 4 months post-exposure and later had consistently shed viable MAP; they also had the highest loads of MAP DNA in faeces 4.75 year s post-exposure. In a trial using a higher dose of MAP, a higher proportion of cattle developed paratuberculosis. The information derived from these trials provides greater understanding of the changes that occur during the course of paratuberculosis in cattle.


Assuntos
Doenças dos Bovinos/microbiologia , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/imunologia , Paratuberculose/patologia , Administração Oral , Animais , Biópsia , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/patologia , Modelos Animais de Doenças , Fezes/microbiologia , Liofilização , Interferon gama/biossíntese , Interferon gama/imunologia , Intestinos/microbiologia , Intestinos/patologia , Mycobacterium avium subsp. paratuberculosis/patogenicidade , Paratuberculose/microbiologia , Remissão Espontânea
8.
PLoS One ; 12(5): e0176400, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28505170

RESUMO

According to most models of mycobacterial infection, inhibition of the pro-inflammatory macrophage immune responses contributes to the persistence of bacteria. Mycobacterium avium subsp. paratuberculosis (MAP) is a highly successful pathogen in cattle and sheep and is also implicated as the causative agent of Crohn's disease in humans. Pathogenic mycobacteria such as MAP have developed multiple strategies to evade host defence mechanisms including interfering with the macrophages' capacity to respond to IFN-γ, a feature which might be lacking in non-pathogenic mycobacteria such as M. smegmatis. We hypothesized that pre-sensitisation of macrophages with the pro-inflammatory cytokine IFN-γ would help in overcoming the inhibitory effect of MAP or its antigens on macrophage inflammatory responses. Herein we have compared a series of macrophage activation parameters in response to MAP and M. smegmatis as well as mycobacterial antigens. While IFN-γ did overcome the inhibition in immune suppressive mechanisms in response to MAP antigen as well as M. smegmatis, we could not find a clear role for IFN-γ in overcoming the inhibition of macrophage inflammatory responses to the pathogenic mycobacterium, MAP. We demonstrate that suppression of macrophage defence mechanisms by pathogenic mycobacteria is unlikely to be overcome by prior sensitization with IFN-γ alone. This indicates that IFN-γ signaling pathway-independent mechanisms may exist for overcoming inhibition of macrophage effector functions in response to pathogenic mycobacteria. These findings have important implications in understanding the survival mechanisms of pathogenic mycobacteria directed towards finding better therapeutics and vaccination strategies.


Assuntos
Interferon gama/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium/imunologia , Animais , Antígenos de Bactérias/imunologia , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interferon gama/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Receptor 2 Toll-Like/metabolismo , Transcriptoma
9.
Appl Environ Microbiol ; 82(18): 5553-62, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27371585

RESUMO

UNLABELLED: Determining the viability of bacteria is a key outcome of in vitro cellular infection assays. Currently, this is done by culture, which is problematic for fastidious slow-growing bacteria such as Mycobacterium avium subsp. paratuberculosis, where it can take up to 4 months to confirm growth. This study aimed to identify an assay that can rapidly quantify the number of viable M. avium subsp. paratuberculosis cells in a cellular sample. Three commercially available bacterial viability assays along with a modified liquid culture method coupled with high-throughput quantitative PCR growth detection were assessed. Criteria for assessment included the ability of each assay to differentiate live and dead M. avium subsp. paratuberculosis organisms and their accuracy at low bacterial concentrations. Using the culture-based method, M. avium subsp. paratuberculosis growth was reliably detected and quantified within 2 weeks. There was a strong linear association between the 2-week growth rate and the initial inoculum concentration. The number of viable M. avium subsp. paratuberculosis cells in an unknown sample was quantified based on the growth rate, by using growth standards. In contrast, none of the commercially available viability assays were suitable for use with samples from in vitro cellular infection assays. IMPORTANCE: Rapid quantification of the viability of Mycobacterium avium subsp. paratuberculosis in samples from in vitro cellular infection assays is important, as it allows these assays to be carried out on a large scale. In vitro cellular infection assays can function as a preliminary screening tool, for vaccine development or antimicrobial screening, and also to extend findings derived from experimental animal trials. Currently, by using culture, it takes up to 4 months to obtain quantifiable results regarding M. avium subsp. paratuberculosis viability after an in vitro infection assay; however, with the quantitative PCR and liquid culture method developed, reliable results can be obtained at 2 weeks. This method will be important for vaccine and antimicrobial screening work, as it will allow a greater number of candidates to be screened in the same amount of time, which will increase the likelihood that a favorable candidate will be found to be subjected to further testing.


Assuntos
Carga Bacteriana/métodos , Viabilidade Microbiana , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Animais , Macrófagos/microbiologia , Camundongos , Mycobacterium avium subsp. paratuberculosis/fisiologia , Células RAW 264.7 , Fatores de Tempo
10.
Crit Rev Microbiol ; 42(2): 262-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25163812

RESUMO

Mycobacteria have a complex cell wall with a high lipid content that confers unique advantages for bacterial survival in the hostile host environment, leading to long-term infection. There is a wealth of evidence suggesting the role cell wall-associated lipid antigens play at the host-pathogen interface by contributing to bacterial virulence. One pathway that pathogenic mycobacteria use to subvert host immune pathways to their advantage is host cholesterol/lipid homeostasis. This review focuses on the possible role of pathogen- and host-associated lipids in the survival and persistence of pathogenic mycobacteria with emphasis on Mycobacterium avium subsp. paratuberculosis. We draw upon literature in diverse areas of infectious and metabolic diseases and explain a mechanism by which mycobacterial-induced changes in the host cellular energy state could account for phenomena that are a hallmark of chronic mycobacterial diseases.


Assuntos
Interações Hospedeiro-Patógeno , Metabolismo dos Lipídeos , Infecções por Mycobacterium/metabolismo , Infecções por Mycobacterium/microbiologia , Mycobacterium avium subsp. paratuberculosis/fisiologia , Mycobacterium/fisiologia , Animais , Apresentação de Antígeno/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Citocinas/metabolismo , Metabolismo Energético , Interações Hospedeiro-Patógeno/imunologia , Humanos , Lipídeos/química , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Infecções por Mycobacterium/imunologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Transdução de Sinais , Estresse Fisiológico , Virulência
11.
Pathog Dis ; 73(9): ftv085, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26454271

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease (JD) in cattle, has significant impacts on the livestock industry and has been implicated in the etiology of Crohn's disease. Macrophages play a key role in JD pathogenesis, which is driven by the manipulation of host immune mechanisms by MAP. A change in the macrophage microenvironment due to pathogenic or host-derived stimuli can lead to classical (M1) or alternative (M2) polarization of macrophages. In addition, prior exposure to antigenic stimuli has been reported to alter the response of macrophages to subsequent stimuli. However, macrophage polarization in response to MAP exposure and its possible implications have not been previously addressed. In this study, we have comprehensively examined monocyte/macrophage polarization and responsiveness to antigens from MAP-exposed and unexposed animals. At 3 years post-exposure, there was a heterogeneous macrophage activation pattern characterized by both classical and alternate phenotypes. Moreover, subsequent exposure of macrophages from MAP-exposed cattle to antigens from MAP and other mycobacterial species led to significant variation in the production of nitric oxide, interleukin-10 and tumour necrosis factor α. These results indicate the previously unreported possibility of changes in the activation state and responsiveness of circulating monocytes/macrophages from MAP-exposed cattle.


Assuntos
Ativação de Macrófagos , Macrófagos/imunologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/patologia , Animais , Bovinos , Interleucina-10/metabolismo , Masculino , Óxido Nítrico/metabolismo , Paratuberculose/microbiologia , Fator de Necrose Tumoral alfa/metabolismo
12.
Vet Immunol Immunopathol ; 156(1-2): 20-31, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24054090

RESUMO

Johne's disease (JD) caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a chronic infectious disease of ruminants. Activation of the Toll-like receptors (TLR) in response to microbial stimuli, including MAP, initiates responses in immune cells of the blood and within peripheral tissues. TLR2, 4 and 9 are believed to play a critical role in the initiation of immune responses against mycobacteria. In this study we report on the in vivo expression pattern of these receptors in sheep and cattle experimentally exposed to MAP. Experiments using the mouse macrophage cell line, RAW 264.7, and on isolated bovine monocytes were also carried out to assess the expression pattern of TLR2 and 4 in response to MAP and the non-pathogenic mycobacterial strain, M. smegmatis. Results from the in vivo study showed that there was a significant upregulation of TLR2 (P<0.05) at early time-points post-inoculation in the peripheral blood cells of sheep exposed to MAP S strain that went on to develop severe (multibacillary) disease. However, in the cattle during the initial months post-exposure to MAP C strain, TLR2 was significantly downregulated (P<0.05). TLR4 was significantly upregulated (P<0.05) at later stages (12 months post-inoculation) in MAP-exposed sheep with multibacillary disease; however significant differences in TLR4 expression were not observed in cattle. Expression of TLR9 was unchanged in MAP-exposed sheep and cattle. In vitro studies on mouse macrophages supported the findings of in vivo TLR2 gene expression increases seen in the sheep, in that the TLR2 receptor expression in response to MAP-infection was significantly increased in comparison to cells infected with a non-virulent mycobacterium, M. smegmatis. A likely role for TLR2 in the pathogenesis of Johne's disease is proposed.


Assuntos
Doenças dos Bovinos/imunologia , Paratuberculose/imunologia , Doenças dos Ovinos/imunologia , Receptores Toll-Like/genética , Animais , Bovinos , Células Cultivadas , Macrófagos/imunologia , Camundongos , Monócitos/imunologia , Paratuberculose/etiologia , Ovinos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/fisiologia
13.
Res Vet Sci ; 95(1): 123-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23540605

RESUMO

Paratuberculosis caused by Mycobacterium avium subsp. paratuberculosis (MAP) is a chronic infectious disease affecting domestic and wild ruminants. Antigens currently used for the diagnosis of paratuberculosis are whole-cell derived crude preparations. The identification of MAP-specific antigens for the specific and early diagnosis of this infection is strongly needed. This study assessed the ability of the MAP-specific synthetic lipopeptide antigen Para-LP-01 to invoke specific serum antibody (Ab) and cell-mediated immune (CMI) responses in sheep experimentally exposed to MAP S strain. Responses were compared to those elicited by the crude whole-cell derived MAP 316v antigen (316v). Para-LP-01 induced a significant serum Ab response in MAP-infected sheep in comparison with unexposed or uninfected sheep, but failed to induce detectable CMI responses including production of IFN-γ, IL-10 and lymphoproliferation, unlike 316v which invoked both CMI and serum Ab responses in MAP-exposed sheep. Para-LP-01 is a suitable antigen for serodiagnosis of MAP-infection in sheep. The differential induction of humoral and CMI responses by lipid based antigens could enhance current understanding of the role played by cell-wall associated lipid antigens in the pathogenesis of MAP-infection.


Assuntos
Antígenos de Bactérias/imunologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/microbiologia , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/microbiologia , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Epitopos , Citometria de Fluxo , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Interferon gama/sangue , Paratuberculose/diagnóstico , Paratuberculose/imunologia , Ovinos , Doenças dos Ovinos/diagnóstico
14.
J Neuroimmunol ; 229(1-2): 98-106, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20850187

RESUMO

Antibody deposition and complement activation, especially membrane attack complex (MAC) formation are considered central for immune mediated demyelination. To examine the role of MAC in immune mediated demyelination, we studied experimental allergic neuritis (EAN) in Lewis rats deficient in complement component 6 (C6) that cannot form MAC. A C6 deficient Lewis (Lewis/C6-) strain of rats was bred by backcrossing the defective C6 gene, from PVG/C6- rats, onto the Lewis background. Lewis/C6- rats had the same C6 gene deletion as PVG/C6- rats and their sera did not support immune mediated haemolysis unless C6 was added. Active EAN was induced in Lewis and Lewis/C6- rats by immunization with bovine peripheral nerve myelin in complete Freund's adjuvant (CFA), and Lewis/C6- rats had delayed clinical EAN compared to the Lewis rats. Peripheral nerve demyelination in Lewis/C6- was also delayed but was similar in extent at the peak of disease. Compared to Lewis, Lewis/C6- nerves had no MAC deposition, reduced macrophage infiltrate and IL-17A, but similar T cell infiltrate and Th1 cytokine mRNA expression. ICAM-1 and P-selectin mRNA expression and immunostaining on vascular endothelium were delayed in Lewis C6- compared to Lewis rats' nerves. This study found that MAC was not required for immune mediated demyelination; but that MAC enhanced early symptoms and early demyelination in EAN, either by direct lysis or by sub-lytic induction of vascular endothelial expression of ICAM-1 and P-selectin.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/metabolismo , Neurite Autoimune Experimental/imunologia , Neurite Autoimune Experimental/metabolismo , Animais , Animais Geneticamente Modificados , Bovinos , Complemento C6/deficiência , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Adjuvante de Freund/imunologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-17/metabolismo , Macrófagos/metabolismo , Microscopia Eletrônica de Transmissão/métodos , Bainha de Mielina/imunologia , Neurite Autoimune Experimental/patologia , Neurite Autoimune Experimental/fisiopatologia , Selectina-P/genética , Selectina-P/metabolismo , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Nervos Periféricos/ultraestrutura , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos Lew , Fatores de Tempo
15.
Transpl Immunol ; 17(3): 178-86, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17331844

RESUMO

Th2 cytokines, especially IL-4 and IL-10, may facilitate transplant tolerance induction but the role of IL-13, another Th2 cytokine, is not known. This study examined the effects of rat recombinant IL-13 (rIL-13) on alloimmune responses. In vitro effects of rIL-13 were compared in mixed lymphocyte cultures (MLC) on rat lymphocytes cultured with PVG stimulator cells. DA rats grafted with fully allogeneic PVG neonatal heart grafts were treated with 40,000 units of rIL-13 for 10 days and graft survival monitored by ECG. Cytokine mRNA expression in the graft and lymphoid tissues was studied by RT-PCR and alloantibody levels assayed. rIL-13 had no effect on MLC, unlike rIL-4 which enhanced proliferation and induced Th2 and inhibited Th1 cytokines in MLC. rIL-13 inhibited IL-12p35, IL-12p40 and TNF-alpha mRNA induction in dendritic cell cultures. Treatment with rIL-13 prolonged fully allogeneic PVG neonatal heart graft survival to 18-21 (13-27) days (median (range)); compared to 12 (9-15) days in untreated normal rejection (p<0.05) and 14 (10-24) days in sham treated controls (p<0.05). RT-PCR studies on graft tissue identified reduced mRNA expression for the dendritic cell/macrophage molecules iNOS, TNF-alpha and IL-12 compared to normal rejection. rIL-13 treatment did not increase Th2 cytokines as compared to normal rejection, or the Th2 dependent IgG1 alloantibody response, while IL-4 did. These studies demonstrated that rIL-13 can prolong allograft survival associated with inhibition of IL-12, TNF-alpha and iNOS mRNA induction, and suggest IL-13 could modify graft rejection by inhibition of dendritic cell and/or macrophage function.


Assuntos
Citocinas/biossíntese , Sobrevivência de Enxerto/imunologia , Interleucina-13/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Animais , Autoanticorpos/sangue , Células CHO , Cricetinae , Cricetulus , Células Dendríticas/imunologia , Rejeição de Enxerto/prevenção & controle , Transplante de Coração , Interleucina-13/metabolismo , Teste de Cultura Mista de Linfócitos , Macrófagos/metabolismo , RNA Mensageiro/análise , Ratos , Proteínas Recombinantes/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA