Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Acta Neuropathol ; 147(1): 38, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347307

RESUMO

Diseases of the central nervous system (CNS) are often associated with vascular disturbances or inflammation and frequently both. Consequently, endothelial cells and macrophages are key cellular players that mediate pathology in many CNS diseases. Macrophages in the brain consist of the CNS-associated macrophages (CAMs) [also referred to as border-associated macrophages (BAMs)] and microglia, both of which are close neighbours or even form direct contacts with endothelial cells in microvessels. Recent progress has revealed that different macrophage populations in the CNS and a subset of brain endothelial cells are derived from the same erythromyeloid progenitor cells. Macrophages and endothelial cells share several common features in their life cycle-from invasion into the CNS early during embryonic development and proliferation in the CNS, to their demise. In adults, microglia and CAMs have been implicated in regulating the patency and diameter of vessels, blood flow, the tightness of the blood-brain barrier, the removal of vascular calcification, and the life-time of brain endothelial cells. Conversely, CNS endothelial cells may affect the polarization and activation state of myeloid populations. The molecular mechanisms governing the pas de deux of brain macrophages and endothelial cells are beginning to be deciphered and will be reviewed here.


Assuntos
Encéfalo , Células Endoteliais , Encéfalo/patologia , Macrófagos , Sistema Nervoso Central/patologia , Microglia
2.
Front Cell Neurosci ; 16: 820127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221925

RESUMO

The activation of microglia and the infiltration of macrophages are hallmarks of neuroinflammation after acute brain injuries, including traumatic brain injury (TBI). The two myeloid populations share many features in the post-injury inflammatory response, thus, being antigenically indistinguishable. Recently Tmem119, a type I transmembrane protein specifically expressed by microglia under physiological conditions, was proposed as a tool to differentiate resident microglia from blood-borne macrophages, not expressing it. However, the validity of Tmem119 as a specific marker of resident microglia in the context of acute brain injury, where microglia are activated and macrophages are recruited, needs validation. Our purpose was to investigate Tmem119 expression and distribution in relation to the morphology of brain myeloid cells present in the injured area after TBI. Mice underwent sham surgery or TBI by controlled cortical impact (CCI). Brains from sham-operated, or TBI mice, were analyzed by in situ hybridization to identify the cells expressing Tmem119, and by Western blot and quantitative immunofluorescence to measure Tmem119 protein levels in the entire brain regions and single cells. The morphology of Iba1+ myeloid cells was analyzed at different times (4 and 7 days after TBI) and several distances from the contused edge in order to associate Tmem119 expression with morphological evolution of active microglia. In situ hybridization indicated an increased Tmem119 RNA along with increased microglial complement C1q activation in the contused area and surrounding regions. On the contrary, the biochemical evaluation showed a drop in Tmem119 protein levels in the same areas. The Tmem119 immunoreactivity decreased in Iba1+ myeloid cells found in the contused cortex at both time points, with the cells showing the hypertrophic ameboid morphology having no Tmem119 expression. The Tmem119 was present on ramifications of resident microglia and its presence was decreased as a consequence of microglial activation in cortical areas close to contusion. Based on the data, we conclude that the decrease of Tmem119 in reactive microglia may depend on the process of microglial activation, which involves the retracting of their branchings to acquire an ameboid shape. The Tmem119 immunoreactivity decreases in reactive microglia to similar levels than the blood-borne macrophages, thus, failing to discriminate the two myeloid populations after TBI.

3.
EBioMedicine ; 66: 103339, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33867313

RESUMO

BACKGROUND: Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease 2019 (COVID-19), exhibit a wide spectrum of disease behaviour. Since DNA methylation has been implicated in the regulation of viral infections and the immune system, we performed an epigenome-wide association study (EWAS) to identify candidate loci regulated by this epigenetic mark that could be involved in the onset of COVID-19 in patients without comorbidities. METHODS: Peripheral blood samples were obtained from 407 confirmed COVID-19 patients ≤ 61 years of age and without comorbidities, 194 (47.7%) of whom had mild symptomatology that did not involve hospitalization and 213 (52.3%) had a severe clinical course that required respiratory support. The set of cases was divided into discovery (n = 207) and validation (n = 200) cohorts, balanced for age and sex of individuals. We analysed the DNA methylation status of 850,000 CpG sites in these patients. FINDINGS: The DNA methylation status of 44 CpG sites was associated with the clinical severity of COVID-19. Of these loci, 23 (52.3%) were located in 20 annotated coding genes. These genes, such as the inflammasome component Absent in Melanoma 2 (AIM2) and the Major Histocompatibility Complex, class I C (HLA-C) candidates, were mainly involved in the response of interferon to viral infection. We used the EWAS-identified sites to establish a DNA methylation signature (EPICOVID) that is associated with the severity of the disease. INTERPRETATION: We identified DNA methylation sites as epigenetic susceptibility loci for respiratory failure in COVID-19 patients. These candidate biomarkers, combined with other clinical, cellular and genetic factors, could be useful in the clinical stratification and management of patients infected with the SARS-CoV-2. FUNDING: The Unstoppable campaign of the Josep Carreras Leukaemia Foundation, the Cellex Foundation and the CERCA Programme/Generalitat de Catalunya.


Assuntos
COVID-19/genética , Metilação de DNA , Epigenoma , Insuficiência Respiratória/virologia , Adulto , COVID-19/etiologia , Estudos de Coortes , Ilhas de CpG , Feminino , Estudo de Associação Genômica Ampla , Humanos , Interferons/genética , Interferons/metabolismo , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Insuficiência Respiratória/genética , Índice de Gravidade de Doença , Espanha , Adulto Jovem
4.
Neurobiol Dis ; 137: 104722, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926295

RESUMO

Central nervous system (CNS)-border associated macrophages (BAMs) maintain their steady-state population during adulthood and are not replaced by circulating monocytes under physiological conditions. Their roles in CNS integrity and functions under pathological conditions remain largely unknown. Until recently, BAMs and microglia could not be unequivocally distinguished due to expression of common macrophage markers. We investigated the transcriptional profiles of immunosorted BAMs from rat sham-operated and ischemic brains using RNA sequencing. We found that BAMs express the distinct transcriptional signature than microglia and infiltrating macrophages. The enrichment of functional groups associated with the cell cycle in CD163+ cells isolated 3 days after the ischemic injury indicates the proliferative capacity of these cells. The increased number of CD163+ cells 3 days post-ischemia was corroborated by flow cytometry and detecting the increased number of CD163+ cells positive for a proliferation marker Ki67 at perivascular spaces. CD163+ cells in the ischemic brains up-regulated many inflammatory genes and parenchymal CD163+ cells expressed iNOS, which indicates acquisition of a pro-inflammatory phenotype. In mice, BAMs typically express CD206 and we found a subset of these cells expressing CD169. Chimeric mice generated by transplanting bone marrow of donor Cx3cr1gfpCCR2rfp mice to wild type hosts showed an increased number of CX3CR1+CD169+ perivascular macrophages 3 days post-ischemia. Furthermore, these cells accumulated in the brain parenchyma and we detected replacement of perivascular macrophages by peripheral monocytic cells in the sub-acute phase of stroke. In line with the animal results, post-mortem brain samples from human ischemic stroke cases showed time-dependent accumulation of CD163+ cells in the ischemic parenchyma. Our findings indicate a unique transcriptional signature of BAMs, their local proliferation and migration of inflammatory BAMs to the brain parenchyma after stroke in animal models and humans.


Assuntos
Isquemia Encefálica/metabolismo , Sistema Nervoso Central/metabolismo , AVC Isquêmico/metabolismo , Macrófagos/metabolismo , Animais , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Humanos , Macrófagos/patologia , Microglia/metabolismo , Monócitos/metabolismo , Monócitos/patologia , Ratos Wistar
5.
Free Neuropathol ; 12020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37283688

RESUMO

The aim of this review is to highlight novel findings in 2019 in the area of neurovascular disease. Experimental studies have provided insight into disease development, molecular determinants of pathology, and putative novel therapeutic targets. Studies in genetic experimental models as well as monogenic forms of human cerebrovascular diseases identified pathogenic molecules that may also be relevant to sporadic cases. There have been advances in understanding the development of cerebral cavernous angiomas and arteriovenous malformations, and putative curative treatments have been suggested from experimental models. Key pathogenic pathways involved in vessel calcification and stiffness have also been identified. At the cellular level, studies showed that proper function of endothelial and mural cells, particularly pericytes, is crucial to ensure full endothelial differentiation and blood-brain barrier integrity. Moreover, recent discoveries support the existence of a homeostatic crosstalk between vascular cells and other neural cells, including neurons. Cerebrovascular diseases are strongly associated with inflammation. Beyond pathogenic roles of specific components of the inflammatory response, new discoveries showed interesting interactions between inflammatory molecules and regulators of vascular function. Clinical investigation on cerebrovascular diseases has progressed by combining advanced imaging and genome-wide association studies. Finally, vascular cognitive impairment and dementia are receiving increasing attention. Recent findings suggest that high-salt intake may cause cerebrovascular dysfunction and cognitive impairment independent of hypoperfusion and hypertension. These and other recent reports will surely inspire further research in the field of cerebrovascular disease that will hopefully contribute to improved prevention and treatment.

6.
Brain Behav Immun ; 82: 406-421, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31525508

RESUMO

The establishment and validation of reliable induced pluripotent stem cell (iPSC)-derived in vitro models to study microglia and monocyte/macrophage immune function holds great potential for fundamental and translational neuro-immunology research. In this study, we first demonstrate that ramified CX3CR1+ iPSC-microglia (cultured within a neural environment) and round-shaped CX3CR1- iPSC-macrophages can easily be differentiated from newly established murine CX3CR1eGFP/+CCR2RFP/+ iPSC lines. Furthermore, we show that obtained murine iPSC-microglia and iPSC-macrophages are distinct cell populations, even though iPSC-macrophages may upregulate CX3CR1 expression when cultured within a neural environment. Next, we characterized the phenotypical and functional properties of murine iPSC-microglia and iPSC-macrophages following classical and alternative immune polarisation. While iPSC-macrophages could easily be triggered to adopt a classically-activated or alternatively-activated phenotype following, respectively, lipopolysaccharide + interferon γ or interleukin 13 (IL13) stimulation, iPSC-microglia and iPSC-macrophages cultured within a neural environment displayed a more moderate activation profile as characterised by the absence of MHCII expression upon classical immune polarisation and the absence of Ym1 expression upon alternative immune polarisation. Finally, extending our preceding in vivo studies, this striking phenotypical divergence was also observed for resident microglia and infiltrating monocytes within highly inflammatory cortical lesions in CX3CR1eGFP/+CCR2RFP/+ mice subjected to middle cerebral arterial occlusion (MCAO) stroke and following IL13-mediated therapeutic intervention thereon. In conclusion, our study demonstrates that the applied murine iPSC-microglia and iPSC-macrophage culture models are able to recapitulate in vivo microglia and monocyte/macrophage ontogeny and corresponding phenotypical/functional properties upon classical and alternative immune polarisation, and therefore represent a valuable in vitro platform to further study and modulate microglia and (infiltrating) monocyte immune responses under neuro-inflammatory conditions within a neural environment.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neuroimunomodulação/fisiologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Células-Tronco Pluripotentes Induzidas/fisiologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Monócitos/metabolismo , Neuroimunomodulação/imunologia , Fenótipo , Receptores CCR2/metabolismo
7.
Biochem Pharmacol ; 164: 115-128, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30954486

RESUMO

Uric acid (UA) is a promising protective treatment in ischaemic stroke, but the precise molecular targets underlying its in vivo beneficial actions remain unclear. High concentrations of UA inhibit angiogenesis of cultured endothelial cells via Krüppel-like factor 2 (KLF)-induced downregulation of vascular endothelial growth factor (VEGF), a pro-angiogenic mediator that is able to increase blood-brain barrier (BBB) permeability in acute stroke. Here, we investigated whether UA treatment after ischaemic stroke protects brain endothelial cell functions and modulates the KLF2-VEGF-A axis. Transient intraluminal middle cerebral artery (MCA) occlusion/reperfusion was induced in adult male spontaneously hypertensive (SHR) rats and corresponding normotensive Wistar-Kyoto (WKY) rats. Animals received UA (16 mg/kg) or vehicle (Locke's buffer) i.v. at reperfusion. BBB permeability was evaluated by Evans blue extravasation to the brain and in human cerebral endothelial hCMEC/D3 cells under oxygen-glucose deprivation/re-oxygenation. Circulating VEGF-A levels were measured in rats and acute ischaemic stroke patients from the URICO-ICTUS trial. Angiogenesis progression was assessed in Matrigel-cultured MCA. Worse post-stroke brain damage in SHR than WKY rats was associated with higher hyperaemia at reperfusion, increased Evans blue extravasation, exacerbated MCA angiogenic sprouting, and higher VEGF-A levels. UA treatment reduced infarct volume and Evans blue leakage in both rat strains, improved endothelial cell barrier integrity and KLF2 expression, and lowered VEGF-A levels in SHR rats. Hypertensive stroke patients treated with UA showed lower levels of VEGF-A than patients receiving vehicle. Consistently, UA prevented the enhanced MCA angiogenesis in SHR rats by a mechanism involving KLF2 activation. We conclude that UA treatment after ischaemic stroke upregulates KLF2, reduces VEGF-A signalling, and attenuates brain endothelial cell dysfunctions leading to neuroprotection.


Assuntos
Barreira Hematoencefálica/metabolismo , Hipertensão/sangue , Fatores de Transcrição Kruppel-Like/sangue , Acidente Vascular Cerebral/sangue , Ácido Úrico/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/sangue , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Biomarcadores/sangue , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Método Duplo-Cego , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Fatores de Transcrição Kruppel-Like/agonistas , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Resultado do Tratamento , Ácido Úrico/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
8.
Circ Res ; 124(2): 279-291, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30582456

RESUMO

RATIONALE: CD69 is an immunomodulatory molecule induced during lymphocyte activation. Following stroke, T-lymphocytes upregulate CD69 but its function is unknown. OBJECTIVE: We investigated whether CD69 was involved in brain damage following an ischemic stroke. METHODS AND RESULTS: We used adult male mice on the C57BL/6 or BALB/c backgrounds, including wild-type mice and CD69-/- mice, and CD69+/+ and CD69-/- lymphocyte-deficient Rag2-/- mice, and generated chimeric mice. We induced ischemia by transient or permanent middle cerebral artery occlusion. We measured infarct volume, assessed neurological function, and studied CD69 expression, as well as platelet function, fibrin(ogen) deposition, and VWF (von Willebrand factor) expression in brain vessels and VWF content and activity in plasma, and performed the tail-vein bleeding test and the carotid artery ferric chloride-induced thrombosis model. We also performed primary glial cell cultures and sorted brain CD45-CD11b-CD31+ endothelial cells for mRNA expression studies. We blocked VWF by intravenous administration of anti-VWF antibodies. CD69-/- mice showed larger infarct volumes and worse neurological deficits than the wild-type mice after ischemia. This worsening effect was not attributable to lymphocytes or other hematopoietic cells. CD69 deficiency lowered the time to thrombosis in the carotid artery despite platelet function not being affected. Ischemia upregulated Cd69 mRNA expression in brain endothelial cells. CD69-deficiency increased fibrin(ogen) accumulation in the ischemic tissue, and plasma VWF content and activity, and VWF expression in brain vessels. Blocking VWF reduced infarct volume and reverted the detrimental effect of CD69-/- deficiency. CONCLUSIONS: CD69 deficiency promotes a prothrombotic phenotype characterized by increased VWF and worse brain damage after ischemic stroke. The results suggest that CD69 acts as a downregulator of endothelial activation.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Linfócitos T/metabolismo , Animais , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Coagulação Sanguínea , Plaquetas/metabolismo , Encéfalo/patologia , Células Cultivadas , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Células Endoteliais/patologia , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Lectinas Tipo C/deficiência , Lectinas Tipo C/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais , Linfócitos T/patologia , Fator de von Willebrand/metabolismo
10.
Acta Neuropathol Commun ; 6(1): 76, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30092836

RESUMO

The central nervous system (CNS) contains several types of immune cells located in specific anatomic compartments. Macrophages reside at the CNS borders surrounding the brain vessels, in leptomeningeal spaces and the choroid plexus, where they interact with the vasculature and play immunological surveillance and scavenging functions. We investigated the phenotypic changes and role of these macrophages in response to acute ischemic stroke. Given that CD163 expression is a hallmark of perivascular and meningeal macrophages in the rat and human brain, we isolated CD163+ brain macrophages by fluorescence activated cell sorting. We obtained CD163+ cells from control rats and 16 h following transient middle cerebral artery occlusion, after verifying that infiltration of CD163+ peripheral myeloid cells is negligible at this acute time point. Transcriptome analysis of the sorted CD163+ cells identified ischemia-induced upregulation of the hypoxia inducible factor-1 pathway and induction of genes encoding for extracellular matrix components and leukocyte chemoattractants, amongst others. Using a cell depletion strategy, we found that CNS border-associated macrophages participate in granulocyte recruitment, promote the expression of vascular endothelial growth factor (VEGF), increase the permeability of pial and cortical blood vessels, and contribute to neurological dysfunction in the acute phase of ischemia/reperfusion. We detected VEGF expression surrounding blood vessels and in some CD163+ perivascular macrophages in the brain tissue of ischemic stroke patients deceased one day after stroke onset. These findings show ischemia-induced reprogramming of the gene expression profile of CD163+ macrophages that has a rapid impact on leukocyte chemotaxis and blood-brain barrier integrity, and promotes neurological impairment in the acute phase of stroke.


Assuntos
Sistema Nervoso Central/fisiologia , Vazamento de Líquido Cefalorraquidiano/etiologia , Granulócitos/patologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Macrófagos/patologia , Animais , Biologia Computacional , Citocinas/genética , Citocinas/metabolismo , Granulócitos/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Análise em Microsséries , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Reperfusão , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
J Cereb Blood Flow Metab ; 37(11): 3488-3517, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28797196

RESUMO

Most in vivo models of ischaemic stroke target the middle cerebral artery and a spectrum of stroke severities, from mild to substantial, can be achieved. This review describes opportunities to improve the in vivo modelling of ischaemic stroke and animal welfare. It provides a number of recommendations to minimise the level of severity in the most common rodent models of middle cerebral artery occlusion, while sustaining or improving the scientific outcomes. The recommendations cover basic requirements pre-surgery, selecting the most appropriate anaesthetic and analgesic regimen, as well as intraoperative and post-operative care. The aim is to provide support for researchers and animal care staff to refine their procedures and practices, and implement small incremental changes to improve the welfare of the animals used and to answer the scientific question under investigation. All recommendations are recapitulated in a summary poster (see supplementary information).


Assuntos
Bem-Estar do Animal/normas , Isquemia Encefálica/patologia , Acidente Vascular Cerebral/patologia , Animais , Modelos Animais de Doenças , Guias como Assunto , Humanos , Infarto da Artéria Cerebral Média/patologia
12.
Cardiovasc Res ; 113(2): 123-133, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28082452

RESUMO

AIMS: Hypertension is a complex condition involving functional and structural alterations of the microvasculature and an activation of the immune system. T-lymphocytes play a crucial role during the development of hypertension in experimental models, yet the underlying mechanisms remain elusive. Lymphocyte egress from lymph nodes is controlled by sphingosine-1-phosphate (S1P), a natural lipid mediator regulating immune cell and vascular function in health and disease. We therefore investigated the involvement of S1P signalling in the pathogenesis of hypertension. METHODS AND RESULTS: Angiotensin-II (AngII) treatment resulted in high blood pressure (BP) associated to increased plasma S1P and circulating T-cell counts. T-cell egress from lymph nodes was found to be a critical initial step for the onset of hypertension as fingolimod, a S1P-receptor agonist sequestering lymphocytes in the lymph nodes and inducing lymphopenia, blunted BP responses to AngII. Furthermore, activity of S1P-generating enzyme type 2 (SphK2) in haematopoietic cells critically contributed to AngII-induced lymphocyte mobilization from the lymph nodes as SphK2-/- mice and mice where SphK2 was ablated only in the haematopoietic system presented an accumulation of T-cells in mesenteric lymph nodes and a blunted BP response. In addition, deregulation of vascular SphK2 expression associated to a thrombo-inflammatory phenotype of the microvasculature, and to functional alterations of small resistance arteries. CONCLUSION: The presented results point to a critical involvement of S1P and its signalling axis in the pathogenesis of hypertension. Specifically, SphK2 evolves as key player in immune cell trafficking and vascular dysfunction contributing to the development of overt hypertension.


Assuntos
Angiotensina II , Pressão Sanguínea , Hipertensão/metabolismo , Linfonodos/metabolismo , Lisofosfolipídeos/sangue , Esfingosina/análogos & derivados , Linfócitos T/metabolismo , Transferência Adotiva , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Transplante de Medula Óssea , Movimento Celular , Modelos Animais de Doenças , Cloridrato de Fingolimode/farmacologia , Predisposição Genética para Doença , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Hipertensão/prevenção & controle , Mediadores da Inflamação/metabolismo , Linfonodos/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/sangue , Linfócitos T/efeitos dos fármacos , Linfócitos T/transplante , Fatores de Tempo , Remodelação Vascular
13.
Sci Rep ; 7: 40758, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28091591

RESUMO

Mesenchymal stem cells (MSCs) are a promising clinical therapy for ischemic stroke. However, critical parameters, such as the most effective administration route, remain unclear. Intravenous (i.v.) and intraarterial (i.a.) delivery routes have yielded varied outcomes across studies, potentially due to the unknown MSCs distribution. We investigated whether MSCs reached the brain following i.a. or i.v. administration after transient cerebral ischemia in rats, and evaluated the therapeutic effects of both routes. MSCs were labeled with dextran-coated superparamagnetic nanoparticles for magnetic resonance imaging (MRI) cell tracking, transmission electron microscopy and immunohistological analysis. MSCs were found in the brain following i.a. but not i.v. administration. However, the i.a. route increased the risk of cerebral lesions and did not improve functional recovery. The i.v. delivery is safe but MCS do not reach the brain tissue, implying that treatment benefits observed for this route are not attributable to brain MCS engrafting after stroke.


Assuntos
Isquemia Encefálica/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/reabilitação , Isquemia Encefálica/terapia , Rastreamento de Células , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Dextranos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Ratos , Recuperação de Função Fisiológica
14.
J Neuroinflammation ; 14(1): 3, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28086956

RESUMO

BACKGROUND: Cyclooxygenase-2 (COX-2) is induced under inflammatory conditions, and prostaglandin E2 (PGE2) is one of the products of COX activity. PGE2 has pleiotropic actions depending on the activation of specific E-type prostanoid EP1-4 receptors. We investigated the involvement of PGE2 and EP receptors in glial activation in response to an inflammatory challenge induced by LPS. METHODS: Cultures of mouse microglia or astroglia cells were treated with LPS in the presence or absence of COX-2 inhibitors, and the production of PGE2 was measured by ELISA. Cells were treated with PGE2, and the effect on LPS-induced expression of TNF-α messenger RNA (mRNA) and protein was studied in the presence or absence of drug antagonists of the four EP receptors. EP receptor expression and the effects of EP2 and EP4 agonists and antagonists were studied at different time points after LPS. RESULTS: PGE2 production after LPS was COX-2-dependent. PGE2 reduced the glial production of TNF-α after LPS. Microglia expressed higher levels of EP4 and EP2 mRNA than astroglia. Activation of EP4 or EP2 receptors with selective drug agonists attenuated LPS-induced TNF-α in microglia. However, only antagonizing EP4 prevented the PGE2 effect demonstrating that EP4 was the main target of PGE2 in naïve microglia. Moreover, the relative expression of EP receptors changed during the course of classical microglial activation since EP4 expression was strongly depressed while EP2 increased 24 h after LPS and was detected in nuclear/peri-nuclear locations. EP2 regulated the expression of iNOS, NADPH oxidase-2, and vascular endothelial growth factor. NADPH oxidase-2 and iNOS activities require the oxidation of NADPH, and the pentose phosphate pathway is a main source of NADPH. LPS increased the mRNA expression of the rate-limiting enzyme of the pentose pathway glucose-6-phosphate dehydrogenase, and EP2 activity was involved in this effect. CONCLUSIONS: These results show that while selective activation of EP4 or EP2 exerts anti-inflammatory actions, EP4 is the main target of PGE2 in naïve microglia. The level of EP receptor expression changes from naïve to primed microglia where the COX-2/PGE2/EP2 axis modulates important adaptive metabolic changes.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Animais Recém-Nascidos , Córtex Cerebral/citologia , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/fisiologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores de Prostaglandina E Subtipo EP2/agonistas , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Glia ; 64(12): 2181-2200, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27685637

RESUMO

Detrimental inflammatory responses in the central nervous system are a hallmark of various brain injuries and diseases. With this study we provide evidence that lentiviral vector-mediated expression of the immune-modulating cytokine interleukin 13 (IL-13) induces an alternative activation program in both microglia and macrophages conferring protection against severe oligodendrocyte loss and demyelination in the cuprizone mouse model for multiple sclerosis (MS). First, IL-13 mediated modulation of cuprizone induced lesions was monitored using T2 -weighted magnetic resonance imaging and magnetization transfer imaging, and further correlated with quantitative histological analyses for inflammatory cell influx, oligodendrocyte death, and demyelination. Second, following IL-13 immune gene therapy in cuprizone-treated eGFP+ bone marrow chimeric mice, we provide evidence that IL-13 directs the polarization of both brain-resident microglia and infiltrating macrophages towards an alternatively activated phenotype, thereby promoting the conversion of a pro-inflammatory environment toward an anti-inflammatory environment, as further evidenced by gene expression analyses. Finally, we show that IL-13 immune gene therapy is also able to limit lesion severity in a pre-existing inflammatory environment. In conclusion, these results highlight the potential of IL-13 to modulate microglia/macrophage responses and to improve disease outcome in a mouse model for MS. GLIA 2016;64:2181-2200.


Assuntos
Doenças Desmielinizantes/terapia , Encefalite/terapia , Terapia Genética/métodos , Interleucina-13 , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Antígenos de Diferenciação/metabolismo , Transplante de Medula Óssea , Cuprizona/toxicidade , Citocinas/genética , Citocinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagem , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Encefalite/diagnóstico por imagem , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-13/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores da Monoaminoxidase/toxicidade , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução Genética
16.
Brain Behav Immun ; 53: 18-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26275369

RESUMO

Acute stroke induces a local inflammatory reaction causing leukocyte infiltration. Circulating monocytes are recruited to the ischemic brain and become tissue macrophages morphologically indistinguishable from reactive microglia. However, monocytes are a heterogeneous population of cells with different functions. Herein, we investigated the infiltration and fate of the monocyte subsets in a mouse model of focal brain ischemia by permanent occlusion of the distal portion of the middle cerebral artery. We separated two main subtypes of CD11b(hi) monocytes according to their expression of the surface markers Ly6C and CD43. Using adoptive transfer of reporter monocytes and monocyte depletion, we identified the pro-inflammatory Ly6C(hi)CD43(lo)CCR2(+) subset as the predominant monocytes recruited to the ischemic tissue. Monocytes were seen in the leptomeninges from where they entered the cortex along the penetrating arterioles. Four days post-ischemia, they had invaded the infarcted core, where they were often located adjacent to blood vessels. At this time, Iba-1(-) and Iba-1(+) cells in the ischemic tissue incorporated BrdU, but BrdU incorporation was rare in the reporter monocytes. The monocyte phenotype progressively changed by down-regulating Ly6C, up-regulating F4/80, expressing low or intermediate levels of Iba-1, and developing macrophage morphology. Moreover, monocytes progressively acquired the expression of typical markers of alternatively activated macrophages, like arginase-1 and YM-1. Collectively, the results show that stroke mobilized immature pro-inflammatory Ly6C(hi)CD43(lo) monocytes that acutely infiltrated the ischemic tissue reaching the core of the lesion. Monocytes differentiated to macrophages with features of alternative activation suggesting possible roles in tissue repair during the sub-acute phase of stroke.


Assuntos
Isquemia Encefálica/imunologia , Microglia/imunologia , Monócitos/imunologia , Transferência Adotiva , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/terapia , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Contagem de Leucócitos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Monócitos/metabolismo , Monócitos/patologia , Monócitos/transplante , Distribuição Aleatória , Receptores CCR2/metabolismo , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
18.
Biochim Biophys Acta ; 1852(3): 421-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25500153

RESUMO

Ischemic stroke is an acute vascular event that compromises neuronal viability, and identification of the pathophysiological mechanisms is critical for its correct management. Ischemia produces increased nitric oxide synthesis to recover blood flow but also induces a free radical burst. Nitric oxide and superoxide anion react to generate peroxynitrite that nitrates tyrosines. We found that fibrinogen nitrotyrosination was detected in plasma after the initiation of ischemic stroke in human patients. Electron microscopy and protein intrinsic fluorescence showed that in vitro nitrotyrosination of fibrinogen affected its structure. Thromboelastography showed that initially fibrinogen nitrotyrosination retarded clot formation but later made the clot more resistant to fibrinolysis. This result was independent of any effect on thrombin production. Immunofluorescence analysis of affected human brain areas also showed that both fibrinogen and nitrotyrosinated fibrinogen spread into the brain parenchyma after ischemic stroke. Therefore, we assayed the toxicity of fibrinogen and nitrotyrosinated fibrinogen in a human neuroblastoma cell line. For that purpose we measured the activity of caspase-3, a key enzyme in the apoptotic pathway, and cell survival. We found that nitrotyrosinated fibrinogen induced higher activation of caspase 3. Accordingly, cell survival assays showed a more neurotoxic effect of nitrotyrosinated fibrinogen at all concentrations tested. In summary, nitrotyrosinated fibrinogen would be of pathophysiological interest in ischemic stroke due to both its impact on hemostasis - it impairs thrombolysis, the main target in stroke treatments - and its neurotoxicity that would contribute to the death of the brain tissue surrounding the infarcted area.


Assuntos
Apoptose , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Fibrinogênio/metabolismo , Fibrinólise , Neurônios/metabolismo , Acidente Vascular Cerebral/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Isquemia Encefálica/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Tirosina/análogos & derivados , Tirosina/metabolismo
19.
Sleep ; 37(7): 1249-56, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25061253

RESUMO

STUDY OBJECTIVES: To test the hypotheses that brain oxygen partial pressure (PtO2) in response to obstructive apneas changes with age and that it might lead to different levels of cerebral tissue oxidative stress. DESIGN: Prospective controlled animal study. SETTING: University laboratory. PARTICIPANTS: Sixty-four male Wistar rats: 32 young (3 mo old) and 32 aged (18 mo). INTERVENTIONS: Protocol 1: Twenty-four animals were subjected to obstructive apneas (50 apneas/h, lasting 15 sec each) or to sham procedure for 50 min. Protocol 2: Forty rats were subjected to obstructive apneas or sham procedure for 4 h. MEASUREMENTS AND RESULTS: Protocol 1: Real-time PtO2 measurements were performed using a fast-response oxygen microelectrode. During successive apneas cerebral cortex PtO2 presented a different pattern in the two age groups; there was a fast increase in young rats, whereas it remained without significant changes between the beginning and the end of the protocol in the aged group. Protocol 2: Brain oxidative stress assessed by lipid peroxidation increased after apneas in young rats (1.34 ± 0.17 nmol/mg of protein) compared to old ones (0.63 ± 0.03 nmol/mg), where a higher expression of antioxidant enzymes was observed. CONCLUSIONS: The results suggest that brain oxidative stress in aged rats is lower than in young rats in response to recurrent apneas, mimicking obstructive sleep apnea. This could be due to the different PtO2 response observed between age groups and the increased antioxidant expression in aged rats. CITATION: Dalmases M, Torres M, Márquez-Kisinousky L, Almendros I, Planas AM, Embid C, Martínez-Garcia MA, Navajas D, Farré R, Montserrat JM. Brain tissue hypoxia and oxidative stress induced by obstructive apneas is different in young and aged rats.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Hipóxia Encefálica/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/fisiopatologia , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Encéfalo/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Glutationa/metabolismo , Hipóxia Encefálica/fisiopatologia , Peroxidação de Lipídeos , Masculino , Pressão Parcial , Estudos Prospectivos , Ratos , Ratos Wistar
20.
Oxid Med Cell Longev ; 2013: 826143, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23983901

RESUMO

Ischemic stroke is an acute vascular event that obstructs blood supply to the brain, producing irreversible damage that affects neurons but also glial and brain vessel cells. Immediately after the stroke, the ischemic tissue produces nitric oxide (NO) to recover blood perfusion but also produces superoxide anion. These compounds interact, producing peroxynitrite, which irreversibly nitrates protein tyrosines. The present study measured NO production in a human neuroblastoma (SH-SY5Y), a murine glial (BV2), a human endothelial cell line (HUVEC), and in primary cultures of human cerebral myocytes (HC-VSMCs) after experimental ischemia in vitro. Neuronal, endothelial, and inducible NO synthase (NOS) expression was also studied up to 24 h after ischemia, showing a different time course depending on the NOS type and the cells studied. Finally, we carried out cell viability experiments on SH-SY5Y cells with H2O2, a prooxidant agent, and with a NO donor to mimic ischemic conditions. We found that both compounds were highly toxic when they interacted, producing peroxynitrite. We obtained similar results when all cells were challenged with peroxynitrite. Our data suggest that peroxynitrite induces cell death and is a very harmful agent in brain ischemia.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Proteínas/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Tirosina/análogos & derivados , Tirosina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA