Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1293578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149052

RESUMO

Introduction: Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) proteins. CFTR controls chloride (Cl-) and bicarbonate (HCO3 -) transport into the Airway Surface Liquid (ASL). We investigated the impact of F508del-CFTR correction on HCO3 - secretion by studying transepithelial HCO3 - fluxes. Methods: HCO3 - secretion was measured by pH-stat technique in primary human respiratory epithelial cells from healthy subjects (WT) and people with CF (pwCF) carrying at least one F508del variant. Its changes after CFTR modulation by the triple combination VX445/661/770 and in the context of TNF-α+IL-17 induced inflammation were correlated to ASL pH and transcriptional levels of CFTR and other HCO3 - transporters of airway epithelia such as SLC26A4 (Pendrin), SLC26A9 and NBCe1. Results: CFTR-mediated HCO3 - secretion was not detected in F508del primary human respiratory epithelial cells. It was rescued up to ∼ 80% of the WT level by VX-445/661/770. In contrast, TNF-α+IL-17 normalized transepithelial HCO3 - transport and increased ASL pH. This was related to an increase in SLC26A4 and CFTR transcript levels. VX-445/661/770 induced an increase in pH only in the context of inflammation. Effects on HCO3 - transport were not different between F508del homozygous and F508del compound heterozygous CF airway epithelia. Conclusion: Our studies show that correction of F508del-CFTR HCO3 - is not sufficient to buffer acidic ASL and inflammation is a key regulator of HCO3 - secretion in CF airways. Prediction of the response to CFTR modulators by theratyping should take into account airway inflammation.

2.
JCI Insight ; 7(22)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36219481

RESUMO

The fluid covering the surface of airway epithelia represents a first barrier against pathogens. The chemical and physical properties of the airway surface fluid are controlled by the activity of ion channels and transporters. In cystic fibrosis (CF), loss of CFTR chloride channel function causes airway surface dehydration, bacterial infection, and inflammation. We investigated the effects of IL-17A plus TNF-α, 2 cytokines with relevant roles in CF and other chronic lung diseases. Transcriptome analysis revealed a profound change with upregulation of several genes involved in ion transport, antibacterial defense, and neutrophil recruitment. At the functional level, bronchial epithelia treated in vitro with the cytokine combination showed upregulation of ENaC channel, ATP12A proton pump, ADRB2 ß-adrenergic receptor, and SLC26A4 anion exchanger. The overall result of IL-17A/TNF-α treatment was hyperviscosity of the airway surface, as demonstrated by fluorescence recovery after photobleaching (FRAP) experiments. Importantly, stimulation with a ß-adrenergic agonist switched airway surface to a low-viscosity state in non-CF but not in CF epithelia. Our study suggests that CF lung disease is sustained by a vicious cycle in which epithelia cannot exit from the hyperviscous state, thus perpetuating the proinflammatory airway surface condition.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Depuração Mucociliar , Interleucina-17/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Adrenérgicos/farmacologia , Células Epiteliais/metabolismo , Fibrose Cística/genética , Citocinas/metabolismo , ATPase Trocadora de Hidrogênio-Potássio
3.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806154

RESUMO

Knowledge on the mechanisms of acid and base secretion in airways has progressed recently. The aim of this review is to summarize the known mechanisms of airway surface liquid (ASL) pH regulation and their implication in lung diseases. Normal ASL is slightly acidic relative to the interstitium, and defects in ASL pH regulation are associated with various respiratory diseases, such as cystic fibrosis. Basolateral bicarbonate (HCO3-) entry occurs via the electrogenic, coupled transport of sodium (Na+) and HCO3-, and, together with carbonic anhydrase enzymatic activity, provides HCO3- for apical secretion. The latter mainly involves CFTR, the apical chloride/bicarbonate exchanger pendrin and paracellular transport. Proton (H+) secretion into ASL is crucial to maintain its relative acidity compared to the blood. This is enabled by H+ apical secretion, mainly involving H+/K+ ATPase and vacuolar H+-ATPase that carry H+ against the electrochemical potential gradient. Paracellular HCO3- transport, the direction of which depends on the ASL pH value, acts as an ASL protective buffering mechanism. How the transepithelial transport of H+ and HCO3- is coordinated to tightly regulate ASL pH remains poorly understood, and should be the focus of new studies.


Assuntos
Bicarbonatos/química , Anidrases Carbônicas/metabolismo , Epitélio/metabolismo , Mucosa Respiratória/metabolismo , Animais , Antiporters/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Coelhos , Transportadores de Sulfato/metabolismo , Traqueia/metabolismo
5.
Am J Physiol Renal Physiol ; 317(2): F435-F443, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188029

RESUMO

We have recently reported that type A intercalated cells of the collecting duct secrete Na+ by a mechanism coupling the basolateral type 1 Na+-K+-2Cl- cotransporter with apical type 2 H+-K+-ATPase (HKA2) functioning under its Na+/K+ exchange mode. The first aim of the present study was to evaluate whether this secretory pathway is a target of atrial natriuretic peptide (ANP). Despite hyperaldosteronemia, metabolic acidosis is not associated with Na+ retention. The second aim of the present study was to evaluate whether ANP-induced stimulation of Na+ secretion by type A intercalated cells might account for mineralocorticoid escape during metabolic acidosis. In Xenopus oocytes expressing HKA2, cGMP, the second messenger of ANP, increased the membrane expression, activity, and Na+-transporting rate of HKA2. Feeding mice with a NH4Cl-enriched diet increased urinary excretion of aldosterone and induced a transient Na+ retention that reversed within 3 days. At that time, expression of ANP mRNA in the collecting duct and urinary excretion of cGMP were increased. Reversion of Na+ retention was prevented by treatment with an inhibitor of ANP receptors and was absent in HKA2-null mice. In conclusion, paracrine stimulation of HKA2 by ANP is responsible for the escape of the Na+-retaining effect of aldosterone during metabolic acidosis.


Assuntos
Equilíbrio Ácido-Base , Acidose/enzimologia , Fator Natriurético Atrial/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Túbulos Renais Coletores/enzimologia , Sódio/urina , Acidose/genética , Acidose/fisiopatologia , Acidose/urina , Adaptação Fisiológica , Aldosterona/urina , Animais , GMP Cíclico/urina , Feminino , ATPase Trocadora de Hidrogênio-Potássio/deficiência , ATPase Trocadora de Hidrogênio-Potássio/genética , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comunicação Parácrina , Ratos , Transdução de Sinais , Xenopus laevis
6.
Sci Rep ; 9(1): 6516, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019198

RESUMO

Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Morbidity is mainly due to early airway infection. We hypothesized that S. aureus clearance during the first hours of infection was impaired in CF human Airway Surface Liquid (ASL) because of a lowered pH. The ASL pH of human bronchial epithelial cell lines and primary respiratory cells from healthy controls (WT) and patients with CF was measured with a pH microelectrode. The antimicrobial capacity of airway cells was studied after S. aureus apical infection by counting surviving bacteria. ASL was significantly more acidic in CF than in WT respiratory cells. This was consistent with a defect in bicarbonate secretion involving CFTR and SLC26A4 (pendrin) and a persistent proton secretion by ATP12A. ASL demonstrated a defect in S. aureus clearance which was improved by pH normalization. Pendrin inhibition in WT airways recapitulated the CF airway defect and increased S. aureus proliferation. ATP12A inhibition by ouabain decreased bacterial proliferation. Antimicrobial peptides LL-37 and hBD1 demonstrated a pH-dependent activity. Normalizing ASL pH might improve innate airway defense in newborns with CF during onset of S. aureus infection. Pendrin activation and ATP12A inhibition could represent novel therapeutic strategies to normalize pH in CF airways.


Assuntos
Brônquios/citologia , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bicarbonatos/química , Bicarbonatos/metabolismo , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactente , Recém-Nascido , Mucosa Respiratória/química , Mucosa Respiratória/microbiologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Transportadores de Sulfato/metabolismo , Catelicidinas
7.
JCI Insight ; 3(20)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30333310

RESUMO

Proton secretion mediated by ATP12A protein on the surface of the airway epithelium may contribute to cystic fibrosis (CF) lung disease by favoring bacterial infection and airway obstruction. We studied ATP12A in fresh bronchial samples and in cultured epithelial cells. In vivo, ATP12A expression was found almost exclusively at the apical side of nonciliated cells of airway epithelium and in submucosal glands, with much higher expression in CF samples. This could be due to bacterial infection and inflammation, since treating cultured cells with bacterial supernatants or with IL-4 (a cytokine that induces goblet cell hyperplasia) increased the expression of ATP12A in nonciliated cells. This observation was associated with upregulation and translocation of ATP1B1 protein from the basal to apical epithelial side, where it colocalizes with ATP12A. ATP12A function was evaluated by measuring the pH of the apical fluid in cultured epithelia. Under resting conditions, CF epithelia showed more acidic values. This abnormality was minimized by inhibiting ATP12A with ouabain. Following treatment with IL-4, ATP12A function was markedly increased, as indicated by strong acidification occurring under bicarbonate-free conditions. Our study reveals potentially novel aspects of ATP12A and remarks its importance as a possible therapeutic target in CF and other respiratory diseases.


Assuntos
Brônquios/patologia , Fibrose Cística/patologia , Células Caliciformes/patologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Animais , Brônquios/citologia , Brônquios/imunologia , Membrana Celular/metabolismo , Células Cultivadas , Colo/citologia , Colo/metabolismo , Fibrose Cística/imunologia , Fibrose Cística/cirurgia , Células Caliciformes/imunologia , Células Caliciformes/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/genética , Humanos , Concentração de Íons de Hidrogênio , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos , Camundongos Knockout , Ouabaína/farmacologia , Permeabilidade , Potássio/metabolismo , Cultura Primária de Células , Inibidores da Bomba de Prótons/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
J Biol Chem ; 292(39): 16109-16121, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28768767

RESUMO

The chloroquine resistance transporter of the human malaria parasite Plasmodium falciparum, PfCRT, is an important determinant of resistance to several quinoline and quinoline-like antimalarial drugs. PfCRT also plays an essential role in the physiology of the parasite during development inside erythrocytes. However, the function of this transporter besides its role in drug resistance is still unclear. Using electrophysiological and flux experiments conducted on PfCRT-expressing Xenopus laevis oocytes, we show here that both wild-type PfCRT and a PfCRT variant associated with chloroquine resistance transport both ferrous and ferric iron, albeit with different kinetics. In particular, we found that the ability to transport ferrous iron is reduced by the specific polymorphisms acquired by the PfCRT variant as a result of chloroquine selection. We further show that iron and chloroquine transport via PfCRT is electrogenic. If these findings in the Xenopus model extend to P. falciparum in vivo, our data suggest that PfCRT might play a role in iron homeostasis, which is essential for the parasite's development in erythrocytes.


Assuntos
Antimaláricos/metabolismo , Cloroquina/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Substituição de Aminoácidos , Animais , Transporte Biológico , Ferro/química , Cinética , Proteínas de Membrana Transportadoras/genética , Mutação , Oócitos/metabolismo , Oxirredução , Técnicas de Patch-Clamp , Proteínas de Protozoários/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
9.
J Mol Biol ; 428(14): 2898-915, 2016 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-27241308

RESUMO

Deletion of Phe508 in the nucleotide binding domain (∆F508-NBD1) of the cystic fibrosis transmembrane regulator (CFTR; a cyclic AMP-regulated chloride channel) is the most frequent mutation associated with cystic fibrosis. This mutation affects the maturation and gating of CFTR protein. The search for new high-affinity ligands of CFTR acting as dual modulators (correctors/activators) presents a major challenge in the pharmacology of cystic fibrosis. Snake venoms are a rich source of natural multifunctional proteins, potential binders of ion channels. In this study, we identified the CB subunit of crotoxin from Crotalus durissus terrificus as a new ligand and allosteric modulator of CFTR. We showed that CB interacts with NBD1 of both wild type and ∆F508CFTR and increases their chloride channel currents. The potentiating effect of CB on CFTR activity was demonstrated using electrophysiological techniques in Xenopus laevis oocytes, in CFTR-HeLa cells, and ex vivo in mouse colon tissue. The correcting effect of CB was shown by functional rescue of CFTR activity after 24-h ΔF508CFTR treatments with CB. Moreover, the presence of fully glycosylated CFTR was observed. Molecular docking allowed us to propose a model of the complex involving of the ABCß and F1-like ATP-binding subdomains of ΔF508-NBD1. Hydrogen-deuterium exchange analysis confirmed stabilization in these regions, also showing allosteric stabilization in two other distal regions. Surface plasmon resonance competition studies showed that CB disrupts the ∆F508CFTR-cytokeratin 8 complex, allowing for the escape of ∆F508CFTR from degradation. Therefore CB, as a dual modulator of ΔF508CFTR, constitutes a template for the development of new anti-CF agents.


Assuntos
Canais de Cloreto/genética , Crotalus/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fosfolipases A2/genética , Venenos de Serpentes/genética , Animais , Linhagem Celular Tumoral , AMP Cíclico/genética , Feminino , Células HeLa , Humanos , Ativação do Canal Iônico/genética , Cinética , Masculino , Camundongos , Simulação de Acoplamento Molecular/métodos , Mutação/genética , Oócitos/metabolismo , Ligação Proteica/genética , Deleção de Sequência/genética , Xenopus laevis/genética
10.
Hum Mutat ; 34(10): 1404-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24272871

RESUMO

Diffuse bronchiectasis is a common problem in respiratory clinics. We hypothesized that mutations in the solute carrier 26A9 (SLC26A9) gene, encoding for a chloride (Cl(-)) transporter mainly expressed in lungs, may lead to defects in mucociliary clearance. We describe two missense variants in the SLC26A9 gene in heterozygote patients presenting with diffuse idiopathic bronchiectasis : p.Arg575Trp, identified in a patient also heterozygote for p.Phe508del in the CFTR gene; and p.Val486Ile. Expression of both mutants in Xenopus laevis oocytes abolished SLC26A9-mediated Cl(-) conductance without decreasing protein membrane expression. Coexpression of CFTR with SLC26A9-p.Val486Ile resulted in a significant increase in the Cl(-) current induced by PKA stimulation, similar to that obtained in oocytes expressing CFTR and SLC26A9-WT. In contrast, coexpression of CFTR with SLC26A9-p.Arg575Trp inhibited SLC26A9-enhanced CFTR activation upon PKA. Further structure-function analyses led us to propose a site encompassing Arg575 in the SLC26A9-STAS domain for CFTR-SLC26A9 interaction. We hypothesize that SLC26A9-p.Arg575Trp prevented SLC26A9-mediated functional activation of CFTR by altering SLC26A9-CFTR interaction. Although we cannot confirm that these mutations by themselves are deleterious, we propose that they trigger the pathogenic role of a single CFTR mutation and provide insight into a novel mechanism of Cl(-) transport alteration across the respiratory mucosa, based on functional inhibition of CFTR.


Assuntos
Antiporters/genética , Pneumopatias/diagnóstico , Pneumopatias/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antiporters/química , Antiporters/metabolismo , Estudos de Casos e Controles , Criança , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Éxons , Feminino , Expressão Gênica , Humanos , Pneumopatias/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Oócitos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transportadores de Sulfato , Tomografia Computadorizada por Raios X , Xenopus laevis , Adulto Jovem
11.
Int J Biochem Cell Biol ; 44(6): 1009-18, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22481026

RESUMO

Prostaglandins, the products of arachidonic acid release and oxidation by phospholipase A(2) and cyclooxygenases (COX) 1 and 2 respectively, are known as important inflammation mediators. However, their diversity in structure, properties and cell specificity make their physiological function difficult to define. In the lung, the prostaglandin D(2) (PGD(2)) metabolite 15d-PGJ(2) is known to modulate the properties of a large number of intracellular compounds, leading to both pro- and anti-inflammatory effects. In the lung, the serous sub-mucosal glands, that strongly express CFTR (cystic fibrosis transmembrane conductance regulator), play an important role in the defence against inflammation, and their derivatives Calu-3 cells are largely used in in vitro experiments. The present study was undertaken to determine whether the PGD synthase-PGD(2)-15d-PGJ(2) pathway is active in Calu-3 cells, and whether its activity requires a functional CFTR. Both cellular and released PGD(2) and 15d-PGJ(2) were measured in cells treated with CFTR inhibitors and stimulated or not with inflammatory IL-1ß. Pretreatment with either CFTR(inh172) or GlyH101 inhibitors decreased the basal cell content of both prostaglandins, and so did acute stimulation with IL-1ß, but the latter was dramatically reversed in CFTR(inh172)-treated cells. CFTR(inh172) also altered the release of inflammation mediators PGE(2) and IL-8, and this effect was blunted by exogenous 15d-PGJ(2). CFTR(inh172)-induced modulation of 15d-PGJ(2) cellular content was not detected in CFTR-silenced Calu-3 cells, but it was reproduced in pulmonary CFBE41o-cells, which express F508del-CFTR. These results show that cellular 15d-PGJ(2) production, which controls PGE(2) and IL-8 release, is disturbed by CFTR dysfunction. In Calu-3 cells, 15d-PGJ(2) production resulted from COX-2-regulated COX-1 activation, while CFTR(inh172)-induced alteration of 15d-PGJ(2) synthesis involved both decreased expression of PGD synthase and disturbed relationships between both COXs. CFTR-mediated regulation of PGD synthase-PGD(2)-15d-PGJ(2) pathway and cellular 15d-PGJ(2) effects may involve a large number of molecular reactive pathways. Their exploration should help understand the development of CF inflammation and might bring new perspectives in its treatment.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Prostaglandina D2/análogos & derivados , Western Blotting , Linhagem Celular , Humanos , Interleucina-1beta/antagonistas & inibidores , Pulmão/citologia , Pulmão/metabolismo , Prostaglandina D2/farmacologia
12.
PLoS One ; 7(4): e34764, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22506049

RESUMO

BACKGROUND: The sodium-hydrogen exchanger regulatory factor 1 (NHERF1) binds to the main renal phosphate transporter NPT2a and to the parathyroid hormone (PTH) receptor. We have recently identified mutations in NHERF1 that decrease renal phosphate reabsorption by increasing PTH-induced cAMP production in the renal proximal tubule. METHODS: We compared relevant parameters of phosphate homeostasis in a patient with a previously undescribed mutation in NHERF1 and in control subjects. We expressed the mutant NHERF1 protein in Xenopus Oocytes and in cultured cells to study its effects on phosphate transport and PTH-induced cAMP production. RESULTS: We identified in a patient with inappropriate renal phosphate reabsorption a previously unidentified mutation (E68A) located in the PDZ1 domain of NHERF1.We report the consequences of this mutation on NHERF1 function. E68A mutation did not modify cAMP production in the patient. PTH-induced cAMP synthesis and PKC activity were not altered by E68A mutation in renal cells in culture. In contrast to wild-type NHERF1, expression of the E68A mutant in Xenopus oocytes and in human cells failed to increase phosphate transport. Pull down experiments showed that E68A mutant did not interact with NPT2a, which robustly interacted with wild type NHERF1 and previously identified mutants. Biotinylation studies revealed that E68A mutant was unable to increase cell surface expression of NPT2a. CONCLUSIONS: Our results indicate that the PDZ1 domain is critical for NHERF1-NPT2a interaction in humans and for the control of NPT2a expression at the plasma membrane. Thus we have identified a new mechanism of renal phosphate loss and shown that different mutations in NHERF1 can alter renal phosphate reabsorption via distinct mechanisms.


Assuntos
Mutação , Hormônio Paratireóideo/metabolismo , Proteínas de Transporte de Fosfato/genética , Fosfoproteínas/genética , Trocadores de Sódio-Hidrogênio/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Idoso , Animais , Linhagem Celular Tumoral , Células Cultivadas , AMP Cíclico/metabolismo , Células HeLa , Humanos , Túbulos Renais Proximais/metabolismo , Oócitos/metabolismo , Gambás , Proteínas de Transporte de Fosfato/biossíntese , Fosfatos/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
13.
PLoS One ; 7(4): e34879, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514683

RESUMO

BACKGROUND: A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF) when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a) functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes. METHODOLOGY/FINDINGS: NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi) was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC) had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression. CONCLUSION/PERSPECTIVES: We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in phosphate homeostasis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Oócitos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Feminino , Ligação Proteica
14.
Hum Mol Genet ; 21(6): 1287-98, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22121115

RESUMO

The Slc26 gene family encodes several conserved anion transporters implicated in human genetic disorders, including Pendred syndrome, diastrophic dysplasia and congenital chloride diarrhea. We previously characterized the TAT1 (testis anion transporter 1; SLC26A8) protein specifically expressed in male germ cells and mature sperm and showed that in the mouse, deletion of Tat1 caused male sterility due to a lack of sperm motility, impaired sperm capacitation and structural defects of the flagella. Ca(2+), Cl(-) and HCO(3)(-) influxes trigger sperm capacitation events required for oocyte fertilization; these events include the intracellular rise of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA)-dependent protein phosphorylation. The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in mature sperm and has been shown to contribute to Cl(-) and HCO(3)(-) movements during capacitation. Furthermore, several members of the SLC26 family have been described to form complexes with CFTR, resulting in the reciprocal regulation of their activities. We show here that TAT1 and CFTR physically interact and that in Xenopus laevis oocytes and in CHO-K1 cells, TAT1 expression strongly stimulates CFTR activity. Consistent with this, we show that Tat1 inactivation in mouse sperm results in deregulation of the intracellular cAMP content, preventing the activation of PKA-dependent downstream phosphorylation cascades essential for sperm activation. These various results suggest that TAT1 and CFTR may form a molecular complex involved in the regulation of Cl(-) and HCO(3)(-) fluxes during sperm capacitation. In humans, mutations in CFTR and/or TAT1 may therefore be causes of asthenozoospermia and low fertilizing capacity of sperm.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Antiporters/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Capacitação Espermática/fisiologia , Testículo/metabolismo , Animais , Bicarbonatos/metabolismo , Células COS , Células Cultivadas , Cloretos/metabolismo , Chlorocebus aethiops , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Eletrofisiologia , Humanos , Immunoblotting , Imunoprecipitação , Masculino , Camundongos , Camundongos Transgênicos , Oócitos/citologia , Oócitos/metabolismo , Fosforilação , Motilidade dos Espermatozoides , Transportadores de Sulfato , Testículo/citologia , Xenopus laevis
15.
Br J Pharmacol ; 163(4): 876-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21366549

RESUMO

BACKGROUND AND PURPOSE: The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent chloride channel in the plasma membrane of epithelia whose mutation is the cause of the genetic disease cystic fibrosis (CF). The most frequent CFTR mutation is deletion of Phe(508) and this mutant protein (delF508CFTR) does not readily translocate to the plasma membrane and is rapidly degraded within the cell. We hypothesized that treating epithelial cells with resveratrol, a natural polyphenolic, phyto-ooestrogenic compound from grapes, could modulate both the expression and localization of CFTR. EXPERIMENTAL APPROACH: Cells endogenously expressing CFTR (MDCK1 and CAPAN1 cells) or delF508CFTR (CFPAC1 and airway epithelial cells, deriving from human bronchial biopsies) were treated with resveratrol for 2 or 18 h. The effect of this treatment on CFTR and delF508CFTR expression and localization was evaluated using RT-PCR, Western blot and immunocytochemistry. Halide efflux was measured with a fluorescent dye and with halide-sensitive electrodes. Production of interleukin-8 by these cells was assayed by ELISA. KEY RESULTS: Resveratrol treatment increased CFTR expression or maturation in immunoblotting experiments in MDCK1 cells or in CFPAC1 cells. Indirect immunofluorescence experiments showed a shift of delF508CFTR localization towards the (peri)-membrane area in CFPAC1 cells and in human airway epithelial cells. A cAMP-dependent increase in membrane permeability to halide was detected in resveratrol-treated CFPAC1 cells, and was inhibited by a selective inhibitor of CFTR. CONCLUSION AND IMPLICATIONS: These results show that resveratrol modulated CFTR expression and localization and could rescue cAMP-dependent chloride transport in delF508CFTR cells.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Estilbenos/farmacologia , Animais , Transporte Biológico , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Canais de Cloreto/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cães , Células Epiteliais/metabolismo , Humanos , Interleucina-8/biossíntese , Interleucina-8/genética , Interleucina-8/metabolismo , Mutação , Resveratrol
16.
N Engl J Med ; 359(11): 1128-35, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18784102

RESUMO

Impaired renal phosphate reabsorption, as measured by dividing the tubular maximal reabsorption of phosphate by the glomerular filtration rate (TmP/GFR), increases the risks of nephrolithiasis and bone demineralization. Data from animal models suggest that sodium-hydrogen exchanger regulatory factor 1 (NHERF1) controls renal phosphate transport. We sequenced the NHERF1 gene in 158 patients, 94 of whom had either nephrolithiasis or bone demineralization. We identified three distinct mutations in seven patients with a low TmP/GFR value. No patients with normal TmP/GFR values had mutations. The mutants expressed in cultured renal cells increased the generation of cyclic AMP (cAMP) by parathyroid hormone (PTH) and inhibited phosphate transport. These NHERF1 mutations suggest a previously unrecognized cause of renal phosphate loss in humans.


Assuntos
Desmineralização Patológica Óssea/genética , Cálculos Renais/genética , Nefrolitíase/genética , Hormônio Paratireóideo/metabolismo , Fosfatos/metabolismo , Fosfoproteínas/genética , Trocadores de Sódio-Hidrogênio/genética , Adulto , Animais , Transporte Biológico/genética , Desmineralização Patológica Óssea/metabolismo , Desmineralização Patológica Óssea/fisiopatologia , Células Cultivadas , AMP Cíclico/biossíntese , AMP Cíclico/urina , Análise Mutacional de DNA , Feminino , Taxa de Filtração Glomerular/genética , Humanos , Hipercalciúria/genética , Rim/citologia , Rim/metabolismo , Cálculos Renais/metabolismo , Cálculos Renais/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mutação , Mutação de Sentido Incorreto , Nefrolitíase/metabolismo , Gambás , Hormônio Paratireóideo/sangue , Fosfatos/sangue
17.
Cell Physiol Biochem ; 21(1-3): 75-86, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18209474

RESUMO

The CFTR protein, encoded by the gene whose mutations induce Cystic Fibrosis, is an anion channel devoted mainly to chloride and bicarbonate transmembrane transport, but which also regulates transport of several other ions. Moreover, it is implicated in the cell response to inflammation, and, reciprocally, cftr gene expression is modulated by inflammatory stimuli and transduction pathways. Looking for a control of CFTR expression by ionic conditions, we investigated the effect of altered extracellular bicarbonate ion concentration on CFTR expression in human pulmonary Calu-3 cells. We found that basal cftr gene transcription is enhanced when extracellular HCO(3)(-) concentration increases from 0 to 25 mmol/l. The transduction pathway controlled by these extracellular [HCO(3)(-)] variations includes cAMP production linked to the stimulation of soluble adenylyl cyclase (sAC), and nuclear accumulation of the transcription factor, CREB. Basal membrane content in CFTR protein exhibits the same variations as cftr mRNA in cells incubated in the presence of extracellular [HCO(3)(-)] between 0 and 25 mmol/l, and is also decreased by inhibiting sAC in the presence of HCO(3)(-). These results show that bicarbonate-controlled sAC stimulation must be taken into account in cell physiology and that basal CFTR expression depends on an ionic parameter.


Assuntos
Adenilil Ciclases/metabolismo , Bicarbonatos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/citologia , Pulmão/enzimologia , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , AMP Cíclico/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
18.
J Pharmacol Exp Ther ; 317(2): 500-5, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16424149

RESUMO

The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, DeltaF508, causes retention of DeltaF508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl(-) channels in the plasma membrane. DeltaF508-CFTR retains some Cl(-) channel activity so increased expression of DeltaF508-CFTR in the plasma membrane can restore Cl(-) secretion deficiency. Recently, curcumin was shown to rescue DeltaF508-CFTR localization and function. In our previous work, the keratin 18 (K18) network was implicated in DeltaF508-CFTR trafficking. Here, we hypothesized that curcumin could restore a functional DeltaF508-CFTR to the plasma membrane acting via the K18 network. First, we analyzed the effects of curcumin on the localization of DeltaF508-CFTR in different cell lines (HeLa cells stably transfected with wild-type CFTR or DeltaF508-CFTR, CALU-3 cells, or cystic fibrosis pancreatic epithelial cells CFPAC-1) and found that it was significantly delocalized toward the plasma membrane in DeltaF508-CFTR-expressing cells. We also performed a functional assay for the CFTR chloride channel in CFPAC-1 cells treated or not with curcumin and detected an increase in a cAMP-dependent chloride efflux in treated DeltaF508-CFTR-expressing cells. The K18 network then was analyzed by immunocytochemistry and immunoblot exclusively in curcumin-treated or untreated CFPAC-1 cells because of their endogenic DeltaF508-CFTR expression. After curcumin treatment, we observed a remodeling of the K18 network and a significant increase in K18 Ser52 phosphorylation, a site directly implicated in the reorganization of intermediate filaments. With these results, we propose that K18 as a new therapeutic target and curcumin, and/or its analogs, might be considered as potential therapeutic agents for cystic fibrosis.


Assuntos
Membrana Celular/efeitos dos fármacos , Curcumina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Queratinas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Relação Dose-Resposta a Droga , Humanos , Immunoblotting , Queratina-18 , Mutação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA