Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 90(6): 2432-2442, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37427535

RESUMO

PURPOSE: [13 C]Bicarbonate formation from hyperpolarized [1-13 C]pyruvate via pyruvate dehydrogenase, a key regulatory enzyme, represents the cerebral oxidation of pyruvate and the integrity of mitochondrial function. The present study is to characterize the chronology of cerebral mitochondrial metabolism during secondary injury associated with acute traumatic brain injury (TBI) by longitudinally monitoring [13 C]bicarbonate production from hyperpolarized [1-13 C]pyruvate in rodents. METHODS: Male Wistar rats were randomly assigned to undergo a controlled-cortical impact (CCI, n = 31) or sham surgery (n = 22). Seventeen of the CCI and 9 of the sham rats longitudinally underwent a 1 H/13 C-integrated MR protocol that includes a bolus injection of hyperpolarized [1-13 C]pyruvate at 0 (2 h), 1, 2, 5, and 10 days post-surgery. Separate CCI and sham rats were used for histological validation and enzyme assays. RESULTS: In addition to elevated lactate, we observed significantly reduced bicarbonate production in the injured site. Unlike the immediate appearance of hyperintensity on T2 -weighted MRI, the contrast of bicarbonate signals between the injured region and the contralateral brain peaked at 24 h post-injury, then fully recovered to the normal level at day 10. A subset of TBI rats demonstrated markedly increased bicarbonate in normal-appearing contralateral brain regions post-injury. CONCLUSION: This study demonstrates that aberrant mitochondrial metabolism occurring in acute TBI can be monitored by detecting [13 C]bicarbonate production from hyperpolarized [1-13 C]pyruvate, suggesting that [13 C]bicarbonate is a sensitive in-vivo biomarker of the secondary injury processes.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Ratos , Masculino , Animais , Ácido Pirúvico/metabolismo , Bicarbonatos/metabolismo , Ratos Wistar , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Mitocôndrias/metabolismo , Isótopos de Carbono
2.
Endocrinology ; 159(11): 3848-3859, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30256928

RESUMO

Estrogens provide neuroprotection in animal models of stroke, but uterotrophic effects and cancer risk limit translation. Classic estrogen receptors (ERs) serve as transcription factors, whereas nonnuclear ERs govern numerous cell processes and exert beneficial cardiometabolic effects without uterine or breast cancer growth in mice. Here, we determined how nonnuclear ER stimulation with pathway-preferential estrogen (PaPE)-1 affects stroke outcome in mice. Ovariectomized female mice received vehicle, estradiol (E2), or PaPE-1 before and after transient middle cerebral artery occlusion (tMCAo). Lesion severity was assessed with MRI, and poststroke motor function was evaluated through 2 weeks after tMCAo. Circulating, spleen, and brain leukocyte subpopulations were quantified 3 days after tMCAo by flow cytometry, and neurogenesis and angiogenesis were evaluated histologically 2 weeks after tMCAo. Compared with vehicle, E2 and PaPE-1 reduced infarct volumes at 3 days after tMCAo, though only PaPE-1 reduced leukocyte infiltration into the ischemic brain. Unlike E2, PaPE-1 had no uterotrophic effect. Both interventions had negligible effect on long-term poststroke neuronal or vascular plasticity. All mice displayed a decline in motor performance at 2 days after tMCAo, and vehicle-treated mice did not improve thereafter. In contrast, E2 and PaPE-1 treatment afforded functional recovery at 6 days after tMCAo and beyond. Thus, the selective activation of nonnuclear ER by PaPE-1 decreased stroke severity and improved functional recovery in mice without undesirable uterotrophic effects. The beneficial effects of PaPE-1 are also associated with attenuated neuroinflammation in the brain. PaPE-1 and similar molecules may warrant consideration as efficacious ER modulators providing neuroprotection without detrimental effects on the uterus or cancer risk.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Infarto da Artéria Cerebral Média/fisiopatologia , Desempenho Psicomotor/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Recuperação de Função Fisiológica , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Camundongos , Plasticidade Neuronal , Ovariectomia , Índice de Gravidade de Doença , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Útero/efeitos dos fármacos
3.
J Neuroinflammation ; 11: 22, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24485041

RESUMO

BACKGROUND: Repetitive hypoxic preconditioning (RHP) creates an anti-inflammatory phenotype that protects from stroke-induced injury for months after a 2-week treatment. The mechanisms underlying long-term tolerance are unknown, though one exposure to hypoxia significantly increased peripheral B cell representation. For this study, we sought to determine if RHP specifically recruited B cells into the protected ischemic hemisphere, and whether RHP could phenotypically alter B cells prior to stroke onset. METHODS: Adult, male SW/ND4 mice received RHP (nine exposures over 2 weeks; 8 to 11 % O2; 2 to 4 hours) or identical exposures to 21 % O2 as control. Two weeks following RHP, a 60-minute transient middle cerebral artery occlusion was induced. Standard techniques quantified CXCL13 mRNA and protein expression. Two days after stroke, leukocytes were isolated from brain tissue (70:30 discontinuous Percoll gradient) and profiled on a BD-FACS Aria flow cytometer. In a separate cohort without stroke, sorted splenic CD19+ B cells were isolated 2 weeks after RHP and analyzed on an Illumina MouseWG-6 V2 Bead Chip. Final gene pathways were determined using Ingenuity Pathway Analysis. Student's t-test or one-way analysis of variance determined significance (P < 0.05). RESULTS: CXCL13, a B cell-specific chemokine, was upregulated in post-stroke cortical vessels of both groups. In the ischemic hemisphere, RHP increased B cell representation by attenuating the diapedesis of monocyte, macrophage, neutrophil and T cells, to quantities indistinguishable from the uninjured, contralateral hemisphere. Pre-stroke splenic B cells isolated from RHP-treated mice had >1,900 genes differentially expressed by microarray analysis. Genes related to B-T cell interactions, including antigen presentation, B cell differentiation and antibody production, were profoundly downregulated. Maturation and activation were arrested in a cohort of B cells from pre-stroke RHP-treated mice while regulatory B cells, a subset implicated in neurovascular protection from stroke, were upregulated. CONCLUSIONS: Collectively, our data characterize an endogenous neuroprotective phenotype that utilizes adaptive immune mechanisms pre-stroke to protect the brain from injury post-stroke. Future studies to validate the role of B cells in minimizing injury and promoting central nervous system recovery, and to determine whether B cells mediate an adaptive immunity to systemic hypoxia that protects from subsequent stroke, are needed.


Assuntos
Linfócitos B/metabolismo , Terapia de Imunossupressão , Infarto da Artéria Cerebral Média/complicações , Precondicionamento Isquêmico , Animais , Antígenos CD/metabolismo , Linfócitos B/patologia , Proliferação de Células , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Endotélio/metabolismo , Endotélio/patologia , Citometria de Fluxo , Lateralidade Funcional , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Análise em Microsséries , Fosfopiruvato Hidratase/metabolismo , Fatores de Tempo
4.
J Cereb Blood Flow Metab ; 27(1): 76-85, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16639424

RESUMO

Vascular endothelial growth factor (VEGF) is thought to contribute to both neuroprotection and angiogenesis after stroke. While increased expression of VEGF has been demonstrated in animal models after experimental ischemia, these studies have focused almost exclusively on the infarct and peri-infarct regions. The present study investigated the association of VEGF to neurons in remote cortical areas at three days after an infarct in primary motor cortex (M1). Although these remote areas are outside of the direct influence of the ischemic injury, remote plasticity has been implicated in recovery of function. For this study, intracortical microstimulation techniques identified primary and premotor cortical areas in a non-human primate. A focal ischemic infarct was induced in the M1 hand representation, and neurons and VEGF protein were identified using immunohistochemical procedures. Stereological techniques quantitatively assessed neuronal-VEGF association in the infarct and peri-infarct regions, M1 hindlimb, M1 orofacial, and ventral premotor hand representations, as well as non-motor control regions. The results indicate that VEGF protein significantly increased association to neurons in specific remote cortical areas outside of the infarct and peri-infarct regions. The increased association of VEGF to neurons was restricted to cortical areas that are functionally and/or behaviorally related to the area of infarct. There was no significant increase in M1 orofacial region or in non-motor control regions. We hypothesize that enhancement of neuronal VEGF in these functionally related remote cortical areas may be involved in recovery of function after stroke, through either neuroprotection or the induction of remote angiogenesis.


Assuntos
Infarto Encefálico/metabolismo , Neurônios/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Infarto Encefálico/patologia , Mapeamento Encefálico , Contagem de Células , Estimulação Elétrica , Processamento de Imagem Assistida por Computador , Microeletrodos , Neurônios/patologia , Saimiri , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Regulação para Cima/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA