Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Equine Vet J ; 56(4): 796-805, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38403412

RESUMO

BACKGROUND: PGF2α is commonly given at the end of embryo flushing (EF) to shorten the interval to the next oestrus and ovulation. OBJECTIVES: To determine the effect of repeated EF on plasma progesterone concentration, percentage of mares with endometritis, unwanted pregnancy and subsequent fertility in mares flushed without the use of PGF2α. STUDY DESIGN: Controlled experiments. METHODS: Nine mares were inseminated in seven consecutive cycles (n = 63), to either perform an EF (n = 54) 7-9 days after ovulation or left pregnant (n = 9). PGF2α was not used to induce oestrus. Ultrasound examination and blood sampling were performed just before the EF and 72 h later to determine changes in progesterone concentration and signs of endometritis. RESULTS: The overall percentage of positive EF/pregnancy was 55.5% (30/54) and 66.7% (6/9), respectively. The likelihood of pregnancy/positive EF in the first three cycles was 55.5% (15/29). This was not different (p > 0.1) from the fertility of the last four cycles (69.4%, 25/36). In five EF cycles (9.3%), mares had signs of endometritis and early luteolysis (progesterone <2 ng/mL) 72 h after EF. The reduction in progesterone concentration by 72 h after EF was greater (p < 0.05) for Day 9 (-2.3 ± 0.7 ng/mL) than Day 7 (-1.0 ± 0.8 ng/mL) or Day 8 (-1.3 ± 1.1 ng/mL) cycles. The progesterone concentration in non-flushed mares did not vary significantly during the sampled period (Day 7-12). There were 5 cycles in which the donor mare remained pregnant after the EF, although four were from a single mare. MAIN LIMITATIONS: The mare population was limited to barren and maiden mares. The cycle order and operator allocation to each EF were not randomised. CONCLUSIONS: EF induces a subtle, but significant reduction in progesterone concentrations compared with non-EF cycles. However, the percentage of mares with EF-induced full luteolysis is low (9.3%). The fertility of mares after repeated EF without administration of PGF2α was unaffected; however, there is a considerable risk of unwanted pregnancy (5/27 = 18.5%) in donors from which an embryo was not recovered.


Assuntos
Dinoprosta , Animais , Feminino , Cavalos/fisiologia , Gravidez , Dinoprosta/administração & dosagem , Dinoprosta/farmacologia , Progesterona/sangue , Fertilidade/efeitos dos fármacos , Doenças dos Cavalos , Inseminação Artificial/veterinária , Corpo Lúteo/efeitos dos fármacos
2.
J Cell Biochem ; 119(1): 1122-1133, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28703940

RESUMO

Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. However, evidence suggests that this compound could exert deleterious actions on cell physiology. In this study, we have analyzed the effect of ebselen on rat pancreatic AR42J cells. Cytosolic free-Ca2+ concentration ([Ca2+ ]c ), cellular oxidative status, setting of endoplasmic reticulum stress, and phosphorylation of major mitogen-activated protein kinases were analyzed. Our results show that ebselen evoked a concentration-dependent increase in [Ca2+ ]c . The compound induced an increase in the generation of reactive oxygen species in the mitochondria. We also observed an increase in global cysteine oxidation in the presence of ebselen. In the presence of ebselen an impairment of cholecystokinin-evoked amylase release was noted. Moreover, involvement of the unfolded protein response markers, ER chaperone and signaling regulator GRP78/BiP, eukaryotic translation initiation factor 2α and X-box binding protein 1 was detected. Finally, increases in the phosphorylation of SAPK/JNK, p38 MAPK, and p44/42 MAPK in the presence of ebselen were also observed. Our results provide evidences for an impairment of cellular oxidative state and enzyme secretion, the induction of endoplasmic reticulum stress and the activation of crucial mitogen-activated protein kinases in the presence of ebselen. As a consequence ebselen exerts a potential toxic effect on AR42J cells.


Assuntos
Azóis/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Amilases/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Isoindóis , Neoplasias Pancreáticas/tratamento farmacológico , Fosforilação , Ratos , Transdução de Sinais/efeitos dos fármacos
3.
PLoS One ; 10(9): e0138777, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26407142

RESUMO

Mitochondria have been proposed as the major source of reactive oxygen species in somatic cells and human spermatozoa. However, no data regarding the role of mitochondrial ROS production in stallion spermatozoa are available. To shed light on the role of the mitochondrial electron transport chain in the origin of oxidative stress in stallion spermatozoa, specific inhibitors of complex I (rotenone) and III (antimycin-A) were used. Ejaculates from seven Andalusian stallions were collected and incubated in BWW media at 37 °C in the presence of rotenone, antimycin-A or control vehicle. Incubation in the presence of these inhibitors reduced sperm motility and velocity (CASA analysis) (p<0.01), but the effect was more evident in the presence of rotenone (a complex I inhibitor). These inhibitors also decreased ATP content. The inhibition of complexes I and III decreased the production of reactive oxygen species (p<0.01) as assessed by flow cytometry after staining with CellRox deep red. This observation suggests that the CellRox probe mainly identifies superoxide and that superoxide production may reflect intense mitochondrial activity rather than oxidative stress. The inhibition of complex I resulted in increased hydrogen peroxide production (p<0.01). The inhibition of glycolysis resulted in reduced sperm velocities (p<0.01) without an effect on the percentage of total motile sperm. Weak and moderate (but statistically significant) positive correlations were observed between sperm motility, velocity and membrane integrity and the production of reactive oxygen species. These results indicate that stallion sperm rely heavily on oxidative phosphorylation (OXPHOS) for the production of ATP for motility but also require glycolysis to maintain high velocities. These data also indicate that increased hydrogen peroxide originating in the mitochondria is a mechanism involved in stallion sperm senescence.


Assuntos
Trifosfato de Adenosina/biossíntese , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Animais , Glicólise/efeitos dos fármacos , Cavalos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
4.
Reproduction ; 148(2): 221-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850868

RESUMO

AKT, also referred to as protein kinase B (PKB or RAC), plays a critical role in controlling cell survival and apoptosis. To gain insights into the mechanisms regulating sperm survival after ejaculation, the role of AKT was investigated in stallion spermatozoa using a specific inhibitor and a phosphoflow approach. Stallion spermatozoa were washed and incubated in Biggers-Whitten-Whittingham medium, supplemented with 1% polyvinyl alcohol (PVA) in the presence of 0 (vehicle), 10, 20 or 30 µM SH5, an AKT inhibitor. SH5 treatment reduced the percentage of sperm displaying AKT phosphorylation, with inhibition reaching a maximum after 1 h of incubation. This decrease in phosphorylation was attributable to either dephosphorylation or suppression of the active phosphorylation pathway. Stallion spermatozoa spontaneously dephosphorylated during in vitro incubation, resulting in a lack of a difference in AKT phosphorylation between the SH5-treated sperm and the control after 4 h of incubation. AKT inhibition decreased the proportion of motile spermatozoa (total and progressive) and the sperm velocity. Similarly, AKT inhibition reduced membrane integrity, leading to increased membrane permeability and reduced the mitochondrial membrane potential concomitantly with activation of caspases 3 and 7. However, the percentage of spermatozoa exhibiting oxidative stress, the production of mitochondrial superoxide radicals, DNA oxidation and DNA fragmentation were not affected by AKT inhibition. It is concluded that AKT maintains the membrane integrity of ejaculated stallion spermatozoa, presumably by inhibiting caspases 3 and 7, which prevents the progression of spermatozoa to an incomplete form of apoptosis.


Assuntos
Caspase 3/química , Caspase 7/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides/citologia , Animais , Apoptose , Western Blotting , Caspase 3/metabolismo , Caspase 7/metabolismo , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Cavalos , Técnicas Imunoenzimáticas , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Análise do Sêmen , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA