Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 19: 2950-2959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136094

RESUMO

For the whole GFP family, a few cases, when a single mutation in the chromophore environment strongly inhibits maturation, were described. Here we study EYFP-F165G - a variant of the enhanced yellow fluorescent protein - obtained by a single F165G replacement, and demonstrated multiple fluorescent states represented by the minor emission peaks in blue and yellow ranges (~470 and ~530 nm), and the major peak at ~330 nm. The latter has been assigned to tryptophan fluorescence, quenched due to excitation energy transfer to the mature chromophore in the parental EYFP protein. EYFP-F165G crystal structure revealed two general independent routes of post-translational chemistry, resulting in two main states of the polypeptide chain with the intact chromophore forming triad (~85%) and mature chromophore (~15%). Our experiments thus highlighted important stereochemical role of the 165th position strongly affecting spectral characteristics of the protein. On the basis of the determined EYFP-F165G three-dimensional structure, new variants with ~ 2-fold improved brightness were engineered.

2.
Int J Biol Macromol ; 155: 551-559, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32243936

RESUMO

The crystal structure of monomeric red fluorescent protein FusionRed (λex/λem 580/608 mn) has been determined at 1.09 Å resolution and revealed two alternative routes of post-translational chemistry, resulting in distinctly different products. The refinement occupancies suggest the 60:40 ratio of the mature Met63-Tyr64-Gly65 chromophore and uncyclized chromophore-forming tripeptide with the protein backbone cleaved between Met63 and the preceding Phe62 and oxidized Cα-Cß bond of Tyr64. We analyzed the structures of FusionRed and several related red fluorescent proteins, identified structural elements causing hydrolysis of the peptide bond, and verified their impact by single point mutagenesis. These findings advance the understanding of the post-translational chemistry of GFP-like fluorescent proteins beyond the canonical cyclization-dehydration-oxidation mechanism. They also show that impaired cyclization does not prevent chromophore-forming tripeptide from further transformations enabled by the same set of catalytic residues. Our mutagenesis efforts resulted in inhibition of the peptide backbone cleavage, and a FusionRed variant with ~30% improved effective brightness.


Assuntos
Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas Luminescentes/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Homologia de Sequência , Proteína Vermelha Fluorescente
3.
Pest Manag Sci ; 74(12): 2761-2772, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29737039

RESUMO

BACKGROUND: The pesticidal properties of many Kunitz-type inhibitors have been reported previously; however, the mechanism of action is not well established. In this study, the activity of alocasin against Aedes aegypti is demonstrated and the structure-activity relationship of this Kunitz-type inhibitor is explained through X-ray structure analyses. RESULTS: Alocasin was purified from mature rhizomes of Alocasia as a single polypeptide chain of ∼ 20 kDa. The structure at 2.5 Å resolution revealed a Kunitz-type fold, but variation in the loop regions makes this structure unique; one loop with a single disulfide bridge is replaced by a long loop with two bridges. Alignment of homologous sequences revealed that this long loop contains a conserved Arg residue and modeling studies showed interaction with the catalytic Ser residue of trypsin-like enzymes. The anti-Aedes aegypti activity of alocasin is examined and discussed in detail. The in vitro activity of alocasin against midgut proteases of Aedes aegypti showed profound inhibition. Further, morphological changes in larvae upon treatment with alocasin revealed its activity against Ae. aegypti. Docking studies of alocasin with trypsin (5G1), a midgut protease involved in the development cycle and blood meal digestion, illustrated its insecticidal activity. CONCLUSION: The three-dimensional structure of alocasin was determined and its structure-function relationship established for its anti Ae. aegypti activity. © 2018 Society of Chemical Industry.


Assuntos
Aedes/efeitos dos fármacos , Aedes/enzimologia , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Cinética , Modelos Moleculares , Conformação Proteica , Proteólise , Relação Estrutura-Atividade , Termodinâmica
4.
Chem Sci ; 8(6): 4546-4557, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28936332

RESUMO

Brighter near-infrared (NIR) fluorescent proteins (FPs) are required for multicolor microscopy and deep-tissue imaging. Here, we present structural and biochemical analyses of three monomeric, spectrally distinct phytochrome-based NIR FPs, termed miRFPs. The miRFPs are closely related and differ by only a few amino acids, which define their molecular brightness, brightness in mammalian cells, and spectral properties. We have identified the residues responsible for the spectral red-shift, revealed a new chromophore bound simultaneously to two cysteine residues in the PAS and GAF domains in blue-shifted NIR FPs, and uncovered the importance of amino acid residues in the N-terminus of NIR FPs for their molecular and cellular brightness. The novel chromophore covalently links the N-terminus of NIR FPs with their C-terminal GAF domain, forming a topologically closed knot in the structure, and also contributes to the increased brightness. Based on our studies, we suggest a strategy to develop spectrally distinct NIR FPs with enhanced brightness.

5.
Proteins ; 78(3): 603-13, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19774618

RESUMO

We have identified a highly conserved fingerprint of 40 residues in the TGYK subfamily of the short-chain oxidoreductase enzymes. The TGYK subfamily is defined by the presence of an N-terminal TGxxxGxG motif and a catalytic YxxxK motif. This subfamily contains more than 12,000 members, with individual members displaying unique substrate specificities. The 40 fingerprint residues are critical to catalysis, cofactor binding, protein folding, and oligomerization but are substrate independent. Their conservation provides critical insight into evolution of the folding and function of TGYK enzymes. Substrate specificity is determined by distinct combinations of residues in three flexible loops that make up the substrate-binding pocket. Here, we report the structure determinations of the TGYK enzyme A3DFK9 from Clostridium thermocellum in its apo form and with bound NAD(+) cofactor. The function of this protein is unknown, but our analysis of the substrate-binding loops putatively identifies A3DFK9 as a carbohydrate or polyalcohol metabolizing enzyme. C. thermocellum has potential commercial applications because of its ability to convert biomaterial into ethanol. A3DFK9 contains 31 of the 40 TGYK subfamily fingerprint residues. The most significant variations are the substitution of a cysteine (Cys84) for a highly conserved glycine within a characteristic VNNAG motif, and the substitution of a glycine (Gly106) for a highly conserved asparagine residue at a helical kink. Both of these variations occur at positions typically participating in the formation of a catalytically important proton transfer network. An alternate means of stabilizing this proton wire was observed in the A3DFK9 crystal structures.


Assuntos
Clostridium thermocellum/enzimologia , Oxirredutases/química , Oxirredutases/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Cristalografia por Raios X , Modelos Moleculares , Mapeamento de Peptídeos/métodos , Ligação Proteica , Água/química
6.
J Steroid Biochem Mol Biol ; 94(4): 327-35, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15857752

RESUMO

Significant sequence homology has been detected between prokaryotic beta-ketoacyl-[acyl carrier protein] reductases (BKR) and eukaryotic 17beta-hydroxysteroid dehydrogenases type 8 (17beta-HSD_8). Three-dimensional models of ternary complexes of human 17beta-HSD_8 with NAD cofactor and two chemically distinct substrates, the BKR substrate {CH3-(CH2)(12)-CO-CH(2)-CO-S-[ACP]} and the HSD substrate {estradiol} have been constructed (the atomic coordinates are available on request; e-mail: pletnev@hwi.buffalo.edu). The more extensive and specific interactions of 17beta-HSD_8 with the BKR substrate compared to interactions with estradiol raise a serious question about the enzyme's primary function in vivo and suggest that it is likely to be involved in the regulation of fatty acid metabolism rather than in the steroid-dependent activity that has been demonstrated in vitro.


Assuntos
Oxirredutases/metabolismo , Proteínas/metabolismo , Proteômica/métodos , 3-Oxoacil-(Proteína Carreadora de Acil) Redutase , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Animais , Brassica napus , Biologia Computacional , Estradiol/química , Estradiol/metabolismo , Humanos , Isoenzimas/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , NAD/química , NAD/metabolismo , Oxirredutases/química , Proteínas/química , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA