Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 367(6473): 45-51, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31806696

RESUMO

High-throughput chemical screens typically use coarse assays such as cell survival, limiting what can be learned about mechanisms of action, off-target effects, and heterogeneous responses. Here, we introduce "sci-Plex," which uses "nuclear hashing" to quantify global transcriptional responses to thousands of independent perturbations at single-cell resolution. As a proof of concept, we applied sci-Plex to screen three cancer cell lines exposed to 188 compounds. In total, we profiled ~650,000 single-cell transcriptomes across ~5000 independent samples in one experiment. Our results reveal substantial intercellular heterogeneity in response to specific compounds, commonalities in response to families of compounds, and insight into differential properties within families. In particular, our results with histone deacetylase inhibitors support the view that chromatin acts as an important reservoir of acetate in cancer cells.


Assuntos
Ensaios de Triagem em Larga Escala , Neoplasias/metabolismo , RNA-Seq/métodos , Análise de Célula Única/métodos , Transcriptoma/efeitos dos fármacos , Células A549 , Acetatos/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cromatina/metabolismo , Genômica , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células K562 , Células MCF-7 , Neoplasias/genética
2.
JAMA Neurol ; 72(4): 396-404, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25643325

RESUMO

IMPORTANCE: Myasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood. OBJECTIVE: To identify genetic variants that alter susceptibility to myasthenia gravis, we performed a genome-wide association study. DESIGN, SETTING, AND PARTICIPANTS: DNA was obtained from 1032 white individuals from North America diagnosed as having acetylcholine receptor antibody-positive myasthenia gravis and 1998 race/ethnicity-matched control individuals from January 2010 to January 2011. These samples were genotyped on Illumina OmniExpress single-nucleotide polymorphism arrays. An independent cohort of 423 Italian cases and 467 Italian control individuals were used for replication. MAIN OUTCOMES AND MEASURES: We calculated P values for association between 8,114,394 genotyped and imputed variants across the genome and risk for developing myasthenia gravis using logistic regression modeling. A threshold P value of 5.0×10(-8) was set for genome-wide significance after Bonferroni correction for multiple testing. RESULTS: In the overall case-control cohort, we identified association signals at CTLA4 (rs231770; P=3.98×10(-8); odds ratio, 1.37; 95% CI, 1.25-1.49), HLA-DQA1 (rs9271871; P=1.08×10(-8); odds ratio, 2.31; 95% CI, 2.02-2.60), and TNFRSF11A (rs4263037; P=1.60×10(-9); odds ratio, 1.41; 95% CI, 1.29-1.53). These findings replicated for CTLA4 and HLA-DQA1 in an independent cohort of Italian cases and control individuals. Further analysis revealed distinct, but overlapping, disease-associated loci for early- and late-onset forms of myasthenia gravis. In the late-onset cases, we identified 2 association peaks: one was located in TNFRSF11A (rs4263037; P=1.32×10(-12); odds ratio, 1.56; 95% CI, 1.44-1.68) and the other was detected in the major histocompatibility complex on chromosome 6p21 (HLA-DQA1; rs9271871; P=7.02×10(-18); odds ratio, 4.27; 95% CI, 3.92-4.62). Association within the major histocompatibility complex region was also observed in early-onset cases (HLA-DQA1; rs601006; P=2.52×10(-11); odds ratio, 4.0; 95% CI, 3.57-4.43), although the set of single-nucleotide polymorphisms was different from that implicated among late-onset cases. CONCLUSIONS AND RELEVANCE: Our genetic data provide insights into aberrant cellular mechanisms responsible for this prototypical autoimmune disorder. They also suggest that clinical trials of immunomodulatory drugs related to CTLA4 and that are already Food and Drug Administration approved as therapies for other autoimmune diseases could be considered for patients with refractory disease.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Cadeias alfa de HLA-DQ/genética , Miastenia Gravis/genética , Adulto , Idade de Início , Antígeno CTLA-4/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Estados Unidos
3.
Neurobiol Aging ; 35(12): 2882.e7-2882.e12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25123918

RESUMO

Conserved populations, such as Sardinians, displaying elevated rates of familial or sporadic amyotrophic lateral sclerosis (ALS) provide unique information on the genetics of the disease. Our aim was to describe the genetic profile of a consecutive series of ALS patients of Sardinian ancestry. All ALS patients of Sardinian ancestry, identified between 2008 and 2013 through the Italian ALS Genetic Consortium, were eligible to be included in the study. Patients and controls underwent the analysis of TARDBP, C9ORF72, SOD1, and FUS genes. Genetic mutations were identified in 155 out of 375 Sardinian ALS cases (41.3%), more commonly the p.A382T and p.G295S mutations of TARDBP and the GGGGCC hexanucleotide repeat expansion of C9ORF72. One patient had both p.G295S and p.A382T mutations of TARDBP and 8 carried both the heterozygous p.A382T mutation of TARDBP and a repeat expansion of C9ORF72. Patients carrying the p.A382T and the p.G295S mutations of TARDBP and the C9ORF72 repeat expansion shared distinct haplotypes across these loci. Patients with cooccurrence of C9ORF72 and TARDBP p.A382T missense mutation had a significantly lower age at onset and shorter survival. More than 40% of all cases on the island of Sardinia carry a mutation of an ALS-related gene, representing the highest percentage of ALS cases genetically explained outside of Scandinavia. Clinical phenotypes associated with different genetic mutations show some distinctive characteristics, but the heterogeneity between and among families carrying the same mutations implies that ALS manifestation is influenced by other genetic and nongenetic factors.


Assuntos
Esclerose Lateral Amiotrófica/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Mutação , Idade de Início , Esclerose Lateral Amiotrófica/epidemiologia , Proteína C9orf72 , Expansão das Repetições de DNA , Proteínas de Ligação a DNA/genética , Genótipo , Humanos , Itália/epidemiologia , Penetrância , Fenótipo , Proteínas/genética , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase/genética , Superóxido Dismutase-1
4.
Acta Neuropathol ; 127(3): 391-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24496499

RESUMO

Recent advances are uncovering more and more of the genetic architecture underlying amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative condition that affects ~6,000 Americans annually. Chief among these was the discovery that a large repeat expansion in the C9ORF72 gene is responsible for an unprecedented portion of familial and sporadic ALS cases. Much has been published on how this expansion disrupts neuronal homeostasis and how gene-based therapy might be an effective treatment in the future. Nevertheless, it is instructive to look back at the origins of this important mutation. In this opinion piece, we attempt to answer three key questions concerning C9ORF72. First, how many times did the expansion occur throughout human history? Second, how old is the expansion? And finally and perhaps most importantly, how did the expansion spread throughout Europe? We speculate that the expansion occurred only once in the past, that this event took place in the Finnish population and that the Vikings and their descendants were responsible for disseminating this mutation throughout the rest of the continent.


Assuntos
Expansão das Repetições de DNA , Evolução Molecular , Proteínas/genética , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72 , Migração Humana , Humanos , Internacionalidade , Fatores de Tempo , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA