Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 17831, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497277

RESUMO

Nanoshells made of a silica core and a gold shell possess an optical response that is sensitive to nanometer-scale variations in shell thickness. The exponential red shift of the plasmon resonance with decreasing shell thickness makes ultrathin nanoshells (less than 10 nm) particularly interesting for broad and tuneable ranges of optical properties. Nanoshells are generally synthesised by coating gold onto seed-covered silica particles, producing continuous shells with a lower limit of 15 nm, due to an inhomogeneous droplet formation on the silica surface during the seed regrowth. In this paper, we investigate the effects of three variations of the synthesis protocol to favour ultrathin nanoshells: seed density, polymer additives and microwave treatment. We first maximised gold seed density around the silica core, but surprisingly its effect is limited. However, we found that the addition of polyvinylpyrrolidone during the shell synthesis leads to higher homogeneity and a thinner shell and that a post-synthetic thermal treatment using microwaves can further smooth the particle surface. This study brings new insights into the synthesis of metallic nanoshells, pushing the limits of ultrathin shell synthesis.

2.
Nanomedicine (Lond) ; 12(14): 1675-1687, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28635419

RESUMO

AIM: Gadolinium-based nanoparticles were functionalized with either the Pittsburgh compound B or a nanobody (B10AP) in order to create multimodal tools for an early diagnosis of amyloidoses. MATERIALS & METHODS: The ability of the functionalized nanoparticles to target amyloid fibrils made of ß-amyloid peptide, amylin or Val30Met-mutated transthyretin formed in vitro or from pathological tissues was investigated by a range of spectroscopic and biophysics techniques including fluorescence microscopy. RESULTS: Nanoparticles functionalized by both probes efficiently interacted with the three types of amyloid fibrils, with KD values in 10 micromolar and 10 nanomolar range for, respectively, Pittsburgh compound B and B10AP nanoparticles. Moreover, they allowed the detection of amyloid deposits on pathological tissues. CONCLUSION: Such functionalized nanoparticles could represent promising flexible and multimodal imaging tools for the early diagnostic of amyloid diseases, in other words, Alzheimer's disease, Type 2 diabetes mellitus and the familial amyloidotic polyneuropathy.


Assuntos
Compostos de Anilina/química , Gadolínio/química , Nanopartículas/química , Placa Amiloide/diagnóstico , Anticorpos de Domínio Único/química , Tiazóis/química , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/análise , Animais , Encéfalo/patologia , Diabetes Mellitus Tipo 2/diagnóstico , Humanos , Imuno-Histoquímica , Polipeptídeo Amiloide das Ilhotas Pancreáticas/análise , Camundongos , Imagem Multimodal
3.
J Nanobiotechnology ; 14(1): 60, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27455834

RESUMO

BACKGROUND: Amyloidoses are characterized by the extracellular deposition of insoluble fibrillar proteinaceous aggregates highly organized into cross-ß structure and referred to as amyloid fibrils. Nowadays, the diagnosis of these diseases remains tedious and involves multiple examinations while an early and accurate protein typing is crucial for the patients' treatment. Routinely used neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) using Pittsburgh compound B, [(11)C]PIB, provide structural information and allow to assess the amyloid burden, respectively, but cannot discriminate between different amyloid deposits. Therefore, the availability of efficient multimodal imaging nanoparticles targeting specific amyloid fibrils would provide a minimally-invasive imaging tool useful for amyloidoses typing and early diagnosis. In the present study, we have functionalized gadolinium-based MRI nanoparticles (AGuIX) with peptides highly specific for Aß amyloid fibrils, LPFFD and KLVFF. The capacity of such nanoparticles grafted with peptide to discriminate among different amyloid proteins, was tested with Aß(1-42) fibrils and with mutated-(V30M) transthyretin (TTR) fibrils. RESULTS: The results of surface plasmon resonance studies showed that both functionalized nanoparticles interact with Aß(1-42) fibrils with equilibrium dissociation constant (Kd) values of 403 and 350 µM respectively, whilst they did not interact with V30M-TTR fibrils. Similar experiments, performed with PIB, displayed an interaction both with Aß(1-42) fibrils and V30M-TTR fibrils, with Kd values of 6 and 10 µM respectively, confirming this agent as a general amyloid fibril marker. Thereafter, the ability of functionalized nanoparticle to target and bind selectively Aß aggregates was further investigated by immunohistochemistry on AD like-neuropathology brain tissue. Pictures clearly indicated that KLVFF-grafted or LPFFD-grafted to AGuIX nanoparticle recognized and bound the Aß amyloid plaque localized in the mouse hippocampus. CONCLUSION: These results constitute a first step for considering these functionalized nanoparticles as a valuable multimodal imaging tool to selectively discriminate and diagnose amyloidoses.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/química , Gadolínio/química , Hipocampo/metabolismo , Nanopartículas Metálicas/química , Fragmentos de Peptídeos/química , Placa Amiloide/diagnóstico por imagem , Pré-Albumina/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Expressão Gênica , Hipocampo/ultraestrutura , Humanos , Cinética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Mutação , Fragmentos de Peptídeos/metabolismo , Peptídeos/síntese química , Peptídeos/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Pré-Albumina/metabolismo , Ligação Proteica , Ressonância de Plasmônio de Superfície
4.
Theranostics ; 6(3): 418-27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26909115

RESUMO

Nanoparticles containing high-Z elements are known to boost the efficacy of radiation therapy. Gadolinium (Gd) is particularly attractive because this element is also a positive contrast agent for MRI, which allows for the simultaneous use of imaging to guide the irradiation and to delineate the tumor. In this study, we used the Gd-based nanoparticles, AGuIX®. After intravenous injection into animals bearing B16F10 tumors, some nanoparticles remained inside the tumor cells for more than 24 hours, indicating that a single administration of nanoparticles might be sufficient for several irradiations. Combining AGuIX® with radiation therapy increases tumor cell death, and improves the life spans of animals bearing multiple brain melanoma metastases. These results provide preclinical proof-of-concept for a phase I clinical trial.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/secundário , Meios de Contraste/administração & dosagem , Gadolínio/administração & dosagem , Melanoma/secundário , Radioterapia Guiada por Imagem/métodos , Animais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Melanoma/diagnóstico , Melanoma/terapia , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/química
5.
NMR Biomed ; 28(6): 738-46, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25921808

RESUMO

The development of new non-invasive diagnostic and therapeutic approaches is of paramount importance in order to improve the outcome of patients with glioblastoma (GBM). In this work we investigated a completely non-invasive pre-clinical protocol to effectively target and detect brain tumors through the orotracheal route, using ultra-small nanoparticles (USRPs) and MRI. A mouse model of GBM was developed. In vivo MRI acquisitions were performed before and after intravenous or orotracheal administration of the nanoparticles to identify and segment the tumor. The accumulation of the nanoparticles in neoplastic lesions was assessed ex vivo through fluorescence microscopy. Before the administration of contrast agents, MR images allowed the identification of the presence of abnormal brain tissue in 73% of animals. After orotracheal or intravenous administration of USRPs, in all the mice an excellent co-localization of the position of the tumor with MRI and histology was observed. The elimination time of the USRPs from the tumor after the orotracheal administration was approximately 70% longer compared with intravenous injection. MRI and USRPs were shown to be powerful imaging tools able to detect, quantify and longitudinally monitor the development of GBMs. The absence of ionizing radiation and high resolution of MRI, along with the complete non-invasiveness and good reproducibility of the proposed protocol, make this technique potentially translatable to humans. To our knowledge, this is the first time that the advantages of a needle-free orotracheal administration route have been demonstrated for the investigation of the pathomorphological changes due to GBMs.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Compostos Heterocíclicos/farmacocinética , Imageamento por Ressonância Magnética/métodos , Compostos Organometálicos/farmacocinética , Administração Oral , Animais , Linhagem Celular Tumoral , Meios de Contraste/administração & dosagem , Feminino , Compostos Heterocíclicos/administração & dosagem , Aumento da Imagem/métodos , Taxa de Depuração Metabólica , Camundongos , Camundongos Nus , Nanopartículas , Compostos Organometálicos/administração & dosagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA