Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 14(5): 1224-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724664

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide and hyperactivation of mTOR signaling plays a pivotal role in HCC tumorigenesis. Tuberous sclerosis complex (TSC), a heterodimer of TSC1 and TSC2, functions as a negative regulator of mTOR signaling. In the current study, we discovered that TSC2 loss-of-function is common in HCC. TSC2 loss was found in 4 of 8 HCC cell lines and 8 of 28 (28.6%) patient-derived HCC xenografts. TSC2 mutations and deletions are likely to be the underlying cause of TSC2 loss in HCC cell lines, xenografts, and primary tumors for most cases. We further demonstrated that TSC2-null HCC cell lines and xenografts had elevated mTOR signaling and, more importantly, were significantly more sensitive to RAD001/everolimus, an mTORC1 inhibitor. These preclinical findings led to the analysis of TSC2 status in HCC samples collected in the EVOLVE-1 clinical trial of everolimus using an optimized immunohistochemistry assay and identified 15 of 139 (10.8%) samples with low to undetectable levels of TSC2. Although the sample size is too small for formal statistical analysis, TSC2-null/low tumor patients who received everolimus tended to have longer overall survival than those who received placebo. Finally, we performed an epidemiology survey of more than 239 Asian HCC tumors and found the frequency of TSC2 loss to be approximately 20% in Asian HBV(+) HCC. Taken together, our data strongly argue that TSC2 loss is a predictive biomarker for the response to everolimus in HCC patients.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/genética , Everolimo/uso terapêutico , Hepatite B/epidemiologia , Neoplasias Hepáticas/genética , Proteínas Supressoras de Tumor/genética , Animais , Povo Asiático/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Hepatite B/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/virologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , Mutação , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Resultado do Tratamento , Proteína 2 do Complexo Esclerose Tuberosa
2.
Mol Cancer ; 13: 141, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24894453

RESUMO

BACKGROUND: Inhibition of the activated epidermal growth factor receptor (EGFR) with either enzymatic kinase inhibitors or anti-EGFR antibodies such as cetuximab, is an effective modality of treatment for multiple human cancers. Enzymatic EGFR inhibitors are effective for lung adenocarcinomas with somatic kinase domain EGFR mutations while, paradoxically, anti-EGFR antibodies are more effective in colon and head and neck cancers where EGFR mutations occur less frequently. In colorectal cancer, anti-EGFR antibodies are routinely used as second-line therapy of KRAS wild-type tumors. However, detailed mechanisms and genomic predictors for pharmacological response to these antibodies in colon cancer remain unclear. FINDINGS: We describe a case of colorectal adenocarcinoma, which was found to harbor a kinase domain mutation, G724S, in EGFR through whole genome sequencing. We show that G724S mutant EGFR is oncogenic and that it differs from classic lung cancer derived EGFR mutants in that it is cetuximab responsive in vitro, yet relatively insensitive to small molecule kinase inhibitors. Through biochemical and cellular pharmacologic studies, we have determined that cells harboring the colon cancer-derived G719S and G724S mutants are responsive to cetuximab therapy in vitro and found that the requirement for asymmetric dimerization of these mutant EGFR to promote cellular transformation may explain their greater inhibition by cetuximab than small-molecule kinase inhibitors. CONCLUSION: The colon-cancer derived G719S and G724S mutants are oncogenic and sensitive in vitro to cetuximab. These data suggest that patients with these mutations may benefit from the use of anti-EGFR antibodies as part of the first-line therapy.


Assuntos
Adenocarcinoma/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias Colorretais/genética , Receptores ErbB/genética , Mutação , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Antineoplásicos/uso terapêutico , Cetuximab , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inibidores de Proteínas Quinases/uso terapêutico , Multimerização Proteica , Estrutura Terciária de Proteína
3.
PLoS One ; 8(9): e74950, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066160

RESUMO

It has been demonstrated for some cancers that the frequency of somatic oncogenic mutations may vary in ancestral populations. To determine whether key driver alterations might occur at different frequencies in colorectal cancer, we applied a high-throughput genotyping platform (OncoMap) to query 385 mutations across 33 known cancer genes in colorectal cancer DNA from 83 Asian, 149 Black and 195 White patients. We found that Asian patients had fewer canonical oncogenic mutations in the genes tested (60% vs Black 79% (P = 0.011) and White 77% (P = 0.015)), and that BRAF mutations occurred at a higher frequency in White patients (17% vs Asian 4% (P = 0.004) and Black 7% (P = 0.014)). These results suggest that the use of genomic approaches to elucidate the different ancestral determinants harbored by patient populations may help to more precisely and effectively treat colorectal cancer.


Assuntos
Neoplasias Colorretais/genética , Taxa de Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , População Negra , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , População Branca , Adulto Jovem
4.
Cancer Discov ; 2(1): 82-93, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22585170

RESUMO

UNLABELLED: Knowledge of "actionable" somatic genomic alterations present in each tumor (e.g., point mutations, small insertions/deletions, and copy-number alterations that direct therapeutic options) should facilitate individualized approaches to cancer treatment. However, clinical implementation of systematic genomic profiling has rarely been achieved beyond limited numbers of oncogene point mutations. To address this challenge, we utilized a targeted, massively parallel sequencing approach to detect tumor genomic alterations in formalin-fixed, paraffin-embedded (FFPE) tumor samples. Nearly 400-fold mean sequence coverage was achieved, and single-nucleotide sequence variants, small insertions/deletions, and chromosomal copynumber alterations were detected simultaneously with high accuracy compared with other methods in clinical use. Putatively actionable genomic alterations, including those that predict sensitivity or resistance to established and experimental therapies, were detected in each tumor sample tested. Thus, targeted deep sequencing of clinical tumor material may enable mutation-driven clinical trials and, ultimately, "personalized" cancer treatment. SIGNIFICANCE: Despite the rapid proliferation of targeted therapeutic agents, systematic methods to profile clinically relevant tumor genomic alterations remain underdeveloped. We describe a sequencingbased approach to identifying genomic alterations in FFPE tumor samples. These studies affirm the feasibility and clinical utility of targeted sequencing in the oncology arena and provide a foundation for genomics-based stratification of cancer patients.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Linhagem Celular Tumoral , Análise Mutacional de DNA/métodos , Dosagem de Genes , Humanos
5.
J Clin Oncol ; 29(22): 3085-96, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21383288

RESUMO

A detailed understanding of the mechanisms by which tumors acquire resistance to targeted anticancer agents should speed the development of treatment strategies with lasting clinical efficacy. RAF inhibition in BRAF-mutant melanoma exemplifies the promise and challenge of many targeted drugs; although response rates are high, resistance invariably develops. Here, we articulate overarching principles of resistance to kinase inhibitors, as well as a translational approach to characterize resistance in the clinical setting through tumor mutation profiling. As a proof of principle, we performed targeted, massively parallel sequencing of 138 cancer genes in a tumor obtained from a patient with melanoma who developed resistance to PLX4032 after an initial dramatic response. The resulting profile identified an activating mutation at codon 121 in the downstream kinase MEK1 that was absent in the corresponding pretreatment tumor. The MEK1(C121S) mutation was shown to increase kinase activity and confer robust resistance to both RAF and MEK inhibition in vitro. Thus, MEK1(C121S) or functionally similar mutations are predicted to confer resistance to combined MEK/RAF inhibition. These results provide an instructive framework for assessing mechanisms of acquired resistance to kinase inhibition and illustrate the use of emerging technologies in a manner that may accelerate personalized cancer medicine.


Assuntos
Antineoplásicos/uso terapêutico , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Indóis/uso terapêutico , MAP Quinase Quinase 1/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Sulfonamidas/uso terapêutico , Adulto , Antineoplásicos/farmacologia , Progressão da Doença , Evolução Fatal , Perfilação da Expressão Gênica , Humanos , Indóis/farmacologia , Masculino , Melanoma/secundário , Proteína de Ligação a Fosfatidiletanolamina/genética , Medicina de Precisão/métodos , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Cutâneas/patologia , Sulfonamidas/farmacologia , Vemurafenib
6.
Cell ; 143(6): 1005-17, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21129771

RESUMO

Systematic characterization of cancer genomes has revealed a staggering number of diverse aberrations that differ among individuals, such that the functional importance and physiological impact of most tumor genetic alterations remain poorly defined. We developed a computational framework that integrates chromosomal copy number and gene expression data for detecting aberrations that promote cancer progression. We demonstrate the utility of this framework using a melanoma data set. Our analysis correctly identified known drivers of melanoma and predicted multiple tumor dependencies. Two dependencies, TBC1D16 and RAB27A, confirmed empirically, suggest that abnormal regulation of protein trafficking contributes to proliferation in melanoma. Together, these results demonstrate the ability of integrative Bayesian approaches to identify candidate drivers with biological, and possibly therapeutic, importance in cancer.


Assuntos
Teorema de Bayes , Proteínas Ativadoras de GTPase/metabolismo , Melanoma/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/genética , Perfilação da Expressão Gênica , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Transporte Proteico , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP
7.
Cancer Cell ; 16(1): 21-32, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19573809

RESUMO

Dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway occurs frequently in human cancer. PTEN tumor suppressor or PIK3CA oncogene mutations both direct PI3K-dependent tumorigenesis largely through activation of the AKT/PKB kinase. However, here we show through phosphoprotein profiling and functional genomic studies that many PIK3CA mutant cancer cell lines and human breast tumors exhibit only minimal AKT activation and a diminished reliance on AKT for anchorage-independent growth. Instead, these cells retain robust PDK1 activation and membrane localization and exhibit dependency on the PDK1 substrate SGK3. SGK3 undergoes PI3K- and PDK1-dependent activation in PIK3CA mutant cancer cells. Thus, PI3K may promote cancer through both AKT-dependent and AKT-independent mechanisms. Knowledge of differential PI3K/PDK1 signaling could inform rational therapeutics in cancers harboring PIK3CA mutations.


Assuntos
Neoplasias da Mama/genética , Mutação , Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/fisiologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Classe I de Fosfatidilinositol 3-Quinases , Ativação Enzimática , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transdução de Sinais/genética
8.
Mol Cell Biol ; 29(19): 5377-88, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19635806

RESUMO

The lipid phosphatase PTEN functions as a tumor suppressor by dephosphorylating the D3 position of phosphoinositide-3,4,5-trisphosphate, thereby negatively regulating the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. In mammalian cells, PTEN exists either as a monomer or as a part of a >600-kDa complex (the PTEN-associated complex [PAC]). Previous studies suggest that the antagonism of PI3K/AKT signaling by PTEN may be mediated by a nonphosphorylated form of the protein resident within the multiprotein complex. Here we show that PTEN associates with p85, the regulatory subunit of PI3K. Using newly generated antibodies, we demonstrate that this PTEN-p85 association involves the unphosphorylated form of PTEN engaged within the PAC and also includes the p110beta isoform of PI3K. The PTEN-p85 association is enhanced by trastuzumab treatment and linked to a decline in AKT phosphorylation in some ERBB2-amplified breast cancer cell lines. Together, these results suggest that integration of p85 into the PAC may provide a novel means of downregulating the PI3K/AKT pathway.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sequência de Aminoácidos , Anticorpos/imunologia , Linhagem Celular , Humanos , Dados de Sequência Molecular , Peso Molecular , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/imunologia , Fosforilação , Ligação Proteica , Subunidades Proteicas/metabolismo , Receptor ErbB-2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA