Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Blood Adv ; 8(11): 2908-2923, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38513140

RESUMO

ABSTRACT: The inhibitory surface receptor programmed cell death protein 1 (PD1) is a major target for antibody-based cancer immunotherapies. Nevertheless, a substantial number of patients fail to respond to the treatment or experience adverse effects. An improved understanding of intracellular pathways targeted by PD1 is thus needed to develop better predictive and prognostic biomarkers. Here, via unbiased phosphoproteome analysis of primary human T cells, we demonstrate that PD1 triggering inhibited the phosphorylation and physical association with protein kinase Cθ (PKCθ) of a variety of cytoskeleton-related proteins. PD1 blocked activation and recruitment of PKCθ to the forming immune synapse (IS) in a Src homology-2 domain-containing phosphatase-1/2 (SHP1/SHP2)-dependent manner. Consequently, PD1 engagement led to impaired synaptic phosphorylation of cytoskeleton-related proteins and formation of smaller IS. T-cell receptor induced phosphorylation of the PKCθ substrate and binding partner vimentin was long-lasting and it could be durably inhibited by PD1 triggering. Vimentin phosphorylation in intratumoral T cells also inversely correlated with the levels of the PD1 ligand, PDL1, in human lung carcinoma. Thus, PKCθ and its substrate vimentin represent important targets of PD1-mediated T-cell inhibition, and low levels of vimentin phosphorylation may serve as a biomarker for the activation of the PD1 pathway.


Assuntos
Sinapses Imunológicas , Receptor de Morte Celular Programada 1 , Proteína Quinase C-theta , Humanos , Fosforilação , Receptor de Morte Celular Programada 1/metabolismo , Proteína Quinase C-theta/metabolismo , Sinapses Imunológicas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Linfócitos T/metabolismo , Linfócitos T/imunologia , Proteína Quinase C/metabolismo , Vimentina/metabolismo , Antígeno B7-H1/metabolismo
2.
J Immunother Cancer ; 12(1)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296597

RESUMO

BACKGROUND: Relapse and graft-versus-host disease (GVHD) are the main causes of death after allogeneic hematopoietic cell transplantation (HCT). Preclinical murine models and clinical data suggest that invariant natural killer T (iNKT) cells prevent acute and chronic GVHD. In addition, iNKT cells are crucial for efficient immune responses against malignancies and contribute to reduced relapse rates after transplantation. Chimeric antigen receptors (CAR) redirect effector cells to cell surface antigens and enhance killing of target cells. With this study, we aimed to combine enhanced cytotoxicity of CD19-CAR-iNKT cells against lymphoma cells with their tolerogenic properties. METHODS: iNKT cells were isolated from peripheral blood mononuclear cells and transduced with an anti-CD19-CAR retrovirus. After in vitro expansion, the functionality of CD19-CAR-iNKT cells was assessed by flow cytometry, image stream analysis and multiplex analysis in single-stimulation or repeated-stimulation assays. Moreover, the immunoregulatory properties of CD19-CAR-iNKT cells were analyzed in apoptosis assays and in mixed lymphocyte reactions. The effect of checkpoint inhibition through nivolumab was analyzed in these settings. RESULTS: In this study, we could show that the cytotoxicity of CD19-CAR-iNKT cells was mediated either through engagement of their CAR or their invariant T-cell receptor, which may circumvent loss of response through antigen escape. However, encounter of CD19-CAR-iNKT cells with their target induced a phenotype of exhaustion. Consequently, checkpoint inhibition increased cytokine release, cytotoxicity and survival of CD19-CAR-iNKT cells. Additionally, they showed robust suppression of alloreactive immune responses. CONCLUSION: In this work, we demonstrate that CAR-iNKT cells are a powerful cytotherapeutic option to prevent or treat relapse while potentially reducing the risk of GVHD after allogeneic HCT.


Assuntos
Doença Enxerto-Hospedeiro , Células T Matadoras Naturais , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptor de Morte Celular Programada 1 , Antígenos CD19 , Doença Enxerto-Hospedeiro/etiologia , Recidiva
3.
Autophagy Rep ; 2(1): 2277584, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38510643

RESUMO

The caspase-like protease MALT1 promotes immune responses and oncogenesis in mammals by activating the transcription factor NF-κB. MALT1 is remarkably conserved from mammals to simple metazoans devoid of NF-κB homologs, like the nematode C. elegans. To discover more ancient, NF-κB -independent MALT1 functions, we analysed the phenotype of C. elegans upon silencing of MALT-1 expression systemically or in a tissue-specific manner. MALT-1 silencing in the intestine caused a significant increase in life span, whereas intestinal overexpression of MALT-1 shortened life expectancy. Interestingly, MALT-1-deficient animals showed higher constitutive levels of autophagy in the intestine, which were particularly evident in aged or starved nematodes. Silencing of the autophagy regulators ATG-13, BEC-1 or LGG-2, but not the TOR homolog LET-363, reversed lifespan extension caused by MALT-1 deficiency. These findings suggest that MALT-1 limits the lifespan of C. elegans by acting as an inhibitor of an early step of autophagy in the intestine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA