Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105425, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926285

RESUMO

Akt3 is one of the three members of the serine/threonine protein kinase B (AKT) family, which regulates multiple cellular processes. We have previously demonstrated that global knockout of Akt3 in mice promotes atherogenesis in a macrophage-dependent manner. Whether enhanced Akt3 kinase activity affects atherogenesis is not known. In this study, we crossed atherosclerosis-prone ApoE-/- mice with a mouse strain that has enhanced Akt3 kinase activity (Akt3nmf350) and assessed atherosclerotic lesion formation and the role of macrophages in atherogenesis. Significant reduction in atherosclerotic lesion area and macrophage accumulation in lesions were observed in ApoE-/-/Akt3nmf350 mice fed a Western-type diet. Experiments using chimeric ApoE-/- mice with either ApoE-/-/Akt3nmf350 bone marrow or ApoE-/- bone marrow cells showed that enhanced Akt3 activity specifically in bone marrow-derived cells is atheroprotective. The atheroprotective effect of Akt3nmf350 was more pronounced in male mice. In line with this result, the release of the pro-inflammatory cytokines IL-6, MCP1, TNF-α, and MIP-1α was reduced by macrophages from male but not female ApoE-/-/Akt3nmf350 mice. Levels of IL-6 and TNF-α were also reduced in atherosclerotic lesions of ApoE-/-/Akt3nmf350 male mice compared to ApoE-/- mice. Macrophages from male ApoE-/-/Akt3nmf350 mice were also more resistant to apoptosis in vitro and in vivo and tended to have more pronounced M2 polarization in vitro. These findings demonstrated that enhanced Akt3 kinase activity in macrophages protects mice from atherosclerosis in hyperlipidemic mice in a gender-dependent manner.


Assuntos
Aterosclerose , Hiperlipidemias , Animais , Masculino , Camundongos , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Hiperlipidemias/complicações , Hiperlipidemias/genética , Interleucina-6 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa
2.
Circ Res ; 132(11): 1447-1461, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37144446

RESUMO

BACKGROUND: Thrombosis is one of the main complications in cancer patients often leading to mortality. However, the mechanisms underlying platelet hyperactivation are poorly understood. METHODS: Murine and human platelets were isolated and treated with small extracellular vesicles (sEVs) from various cancer cell lines. The effects of these cancer-sEVs on platelets were evaluated both in vitro and in vivo using various approaches, including the detection of cancer-sEV-specific markers in murine platelets and patient samples, measurement of platelet activation and thrombosis assays. Signaling events induced by cancer-sEVs and leading to platelet activation were identified, and the use of blocking antibodies to prevent thrombosis was demonstrated. RESULTS: We demonstrate that platelets very effectively take up sEVs from aggressive cancer cells. The process of uptake is fast, proceeds effectively in circulation in mice, and is mediated by the abundant sEV membrane protein-CD63. The uptake of cancer-sEVs leads to the accumulation of cancer cell-specific RNA in platelets in vitro and in vivo. The human prostate cancer-sEV-specific RNA marker PCA3 is detected in platelets of ~70% of prostate cancer patients. This was markedly reduced after prostatectomy. In vitro studies showed that platelet uptake of cancer-sEVs induces strong platelet activation in a CD63-RPTPα (receptor-like protein tyrosine phosphatase alpha)-dependent manner. In contrast to physiological agonists ADP and thrombin, cancer-sEVs activate platelets via a noncanonical mechanism. Intravital studies demonstrated accelerated thrombosis both in murine tumor models and in mice that received intravenous injections of cancer-sEVs. The prothrombotic effects of cancer-sEVs were rescued by blocking CD63. CONCLUSIONS: Tumors communicate with platelets by means of sEVs, which deliver cancer markers and activate platelets in a CD63-dependent manner leading to thrombosis. This emphasizes the diagnostic and prognostic value of platelet-associated cancer markers and identifies new pathways for intervention.


Assuntos
Vesículas Extracelulares , Neoplasias da Próstata , Trombose , Masculino , Humanos , Animais , Camundongos , Plaquetas/metabolismo , Ativação Plaquetária , Trombose/metabolismo , Transdução de Sinais , Neoplasias da Próstata/metabolismo , Vesículas Extracelulares/metabolismo
3.
Front Immunol ; 13: 867082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720381

RESUMO

Oxidation of polyunsaturated fatty acids contributes to different aspects of the inflammatory response due to the variety of products generated. Specifically, the oxidation of DHA produces the end-product, carboxyethylpyrrole (CEP), which forms a covalent adduct with proteins via an ϵ-amino group of lysines. Previously, we found that CEP formation is dramatically increased in inflamed tissue and CEP-modified albumin and fibrinogen became ligands for αDß2 (CD11d/CD18) and αMß2 (CD11b/CD18) integrins. In this study, we evaluated the effect of extracellular matrix (ECM) modification with CEP on the adhesive properties of M1-polarized macrophages, particularly during chronic inflammation. Using digested atherosclerotic lesions and in vitro oxidation assays, we demonstrated the ability of ECM proteins to form adducts with CEP, particularly, DHA oxidation leads to the formation of CEP adducts with collagen IV and laminin, but not with collagen I. Using integrin αDß2-transfected HEK293 cells, WT and αD-/- mouse M1-polarized macrophages, we revealed that CEP-modified proteins support stronger cell adhesion and spreading when compared with natural ECM ligands such as collagen IV, laminin, and fibrinogen. Integrin αDß2 is critical for M1 macrophage adhesion to CEP. Based on biolayer interferometry results, the isolated αD I-domain demonstrates markedly higher binding affinity to CEP compared to the "natural" αDß2 ligand fibrinogen. Finally, the presence of CEP-modified proteins in a 3D fibrin matrix significantly increased M1 macrophage retention. Therefore, CEP modification converts ECM proteins to αDß2-recognition ligands by changing a positively charged lysine to negatively charged CEP, which increases M1 macrophage adhesion to ECM and promotes macrophage retention during detrimental inflammation, autoimmunity, and chronic inflammation.


Assuntos
Laminina , Macrófagos , Animais , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibrinogênio/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Integrinas/metabolismo , Laminina/metabolismo , Ligantes , Camundongos
4.
J Immunol ; 204(7): 1954-1967, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32094207

RESUMO

Major myeloid cell functions from adhesion to migration and phagocytosis are mediated by integrin adhesion complexes, also known as adhesome. The presence of a direct integrin binding partner Kindlin-3 is crucial for these functions, and its lack causes severe immunodeficiency in humans. However, how Kindlin-3 is incorporated into the adhesome and how its function is regulated is poorly understood. In this study, using nuclear magnetic resonance spectroscopy, we show that Kindlin-3 directly interacts with paxillin (PXN) and leupaxin (LPXN) via G43/L47 within its F0 domain. Surprisingly, disruption of Kindlin-3-PXN/LPXN interactions in Raw 264.7 macrophages promoted cell spreading and polarization, resulting in upregulation of both general cell motility and directed cell migration, which is in a drastic contrast to the consequences of Kindlin-3 knockout. Moreover, disruption of Kindlin-3-PXN/LPXN binding promoted the transition from mesenchymal to amoeboid mode of movement as well as augmented phagocytosis. Thus, these novel links between Kindlin-3 and key adhesome members PXN/LPXN limit myeloid cell motility and phagocytosis, thereby providing an important immune regulatory mechanism.


Assuntos
Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Fagocitose/fisiologia , Animais , Sítios de Ligação/fisiologia , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Paxilina/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica/fisiologia , Células RAW 264.7
5.
J Biol Chem ; 295(7): 1973-1984, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31907281

RESUMO

Apolipoprotein A-I (apoA-I) is cross-linked and dysfunctional in human atheroma. Although multiple mechanisms of apoA-I cross-linking have been demonstrated in vitro, the in vivo mechanisms of cross-linking are not well-established. We have recently demonstrated the highly selective and efficient modification of high-density lipoprotein (HDL) apoproteins by endogenous oxidized phospholipids (oxPLs), including γ-ketoalkenal phospholipids. In the current study, we report that γ-ketoalkenal phospholipids effectively cross-link apoproteins in HDL. We further demonstrate that cross-linking impairs the cholesterol efflux mediated by apoA-I or HDL3 in vitro and in vivo Using LC-MS/MS analysis, we analyzed the pattern of apoprotein cross-linking in isolated human HDL either by synthetic γ-ketoalkenal phospholipids or by oxPLs generated during HDL oxidation in plasma by the physiologically relevant MPO-H2O2-NO2- system. We found that five histidine residues in helices 5-8 of apoA-I are preferably cross-linked by oxPLs, forming stable pyrrole adducts with lysine residues in the helices 3-4 of another apoA-I or in the central domain of apoA-II. We also identified cross-links of apoA-I and apoA-II with two minor HDL apoproteins, apoA-IV and apoE. We detected a similar pattern of apoprotein cross-linking in oxidized murine HDL. We further detected oxPL cross-link adducts of HDL apoproteins in plasma and aorta of hyperlipidemic LDLR-/- mice, including cross-link adducts of apoA-I His-165-apoA-I Lys-93, apoA-I His-154-apoA-I Lys-105, apoA-I His-154-apoA-IV Lys-149, and apoA-II Lys-30-apoE His-227. These findings suggest an important mechanism that contributes to the loss of HDL's atheroprotective function in vivo.


Assuntos
Apolipoproteína A-I/genética , Lipoproteínas HDL3/genética , Fosfolipídeos/genética , Receptores de LDL/genética , Animais , Aorta/metabolismo , Cromatografia Líquida , Humanos , Peróxido de Hidrogênio/metabolismo , Lipoproteínas HDL/genética , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Oxirredução , Fosforilação Oxidativa , Fosfolipídeos/metabolismo , Espectrometria de Massas em Tandem
7.
Blood ; 132(1): 78-88, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29724896

RESUMO

Early stages of inflammation are characterized by extensive oxidative insult by recruited and activated neutrophils. Secretion of peroxidases, including the main enzyme, myeloperoxidase, leads to the generation of reactive oxygen species. We show that this oxidative insult leads to polyunsaturated fatty acid (eg, docosahexaenoate), oxidation, and accumulation of its product 2-(ω-carboxyethyl)pyrrole (CEP), which, in turn, is capable of protein modifications. In vivo CEP is generated predominantly at the inflammatory sites in macrophage-rich areas. During thioglycollate-induced inflammation, neutralization of CEP adducts dramatically reduced macrophage accumulation in the inflamed peritoneal cavity while exhibiting no effect on the early recruitment of neutrophils, suggesting a role in the second wave of inflammation. CEP modifications were abundantly deposited along the path of neutrophils migrating through the 3-dimensional fibrin matrix in vitro. Neutrophil-mediated CEP formation was markedly inhibited by the myeloperoxidase inhibitor, 4-ABH, and significantly reduced in myeloperoxidase-deficient mice. On macrophages, CEP adducts were recognized by cell adhesion receptors, integrin αMß2 and αDß2 Macrophage migration through CEP-fibrin gel was dramatically augmented when compared with fibrin alone, and was reduced by ß2-integrin deficiency. Thus, neutrophil-mediated oxidation of abundant polyunsaturated fatty acids leads to the transformation of existing proteins into stronger adhesive ligands for αMß2- and αDß2-dependent macrophage migration. The presence of a carboxyl group rather than a pyrrole moiety on these adducts, resembling characteristics of bacterial and/or immobilized ligands, is critical for recognition by macrophages. Therefore, specific oxidation-dependent modification of extracellular matrix, aided by neutrophils, promotes subsequent αMß2- and αDß2-mediated migration/retention of macrophages during inflammation.


Assuntos
Antígenos CD11/metabolismo , Antígenos CD18/metabolismo , Movimento Celular , Matriz Extracelular/metabolismo , Cadeias alfa de Integrinas/metabolismo , Antígeno de Macrófago 1/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Animais , Antígenos CD11/genética , Antígenos CD18/genética , Matriz Extracelular/genética , Matriz Extracelular/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Cadeias alfa de Integrinas/genética , Antígeno de Macrófago 1/genética , Macrófagos/patologia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Camundongos , Camundongos Knockout , Neutrófilos/patologia , Oxirredução
8.
Blood ; 127(21): 2618-29, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27015965

RESUMO

A prothrombotic state and increased platelet reactivity are common in dyslipidemia and oxidative stress. Lipid peroxidation, a major consequence of oxidative stress, generates highly reactive products, including hydroxy-ω-oxoalkenoic acids that modify autologous proteins generating biologically active derivatives. Phosphatidylethanolamine, the second most abundant eukaryotic phospholipid, can also be modified by hydroxy-ω-oxoalkenoic acids. However, the conditions leading to accumulation of such derivatives in circulation and their biological activities remain poorly understood. We now show that carboxyalkylpyrrole-phosphatidylethanolamine derivatives (CAP-PEs) are present in the plasma of hyperlipidemic ApoE(-/-) mice. CAP-PEs directly bind to TLR2 and induces platelet integrin αIIbß3 activation and P-selectin expression in a Toll-like receptor 2 (TLR2)-dependent manner. Platelet activation by CAP-PEs includes assembly of TLR2/TLR1 receptor complex, induction of downstream signaling via MyD88/TIRAP, phosphorylation of IRAK4, and subsequent activation of tumor necrosis factor receptor-associated factor 6. This in turn activates the Src family kinases, spleen tyrosine kinase and PLCγ2, and platelet integrins. Murine intravital thrombosis studies demonstrated that CAP-PEs accelerate thrombosis in TLR2-dependent manner and that TLR2 contributes to accelerate thrombosis in mice in the settings of hyperlipidemia. Our study identified the novel end-products of lipid peroxidation, accumulating in circulation in hyperlipidemia and inducing platelet activation by promoting cross-talk between innate immunity and integrin activation signaling pathways.


Assuntos
Apolipoproteínas E/deficiência , Plaquetas/metabolismo , Hiperlipidemias/metabolismo , Fosfatidiletanolaminas/metabolismo , Ativação Plaquetária , Trombose/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Hiperlipidemias/genética , Hiperlipidemias/patologia , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosfatidiletanolaminas/genética , Fosforilação/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Trombose/genética , Trombose/patologia , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética
9.
Circ Res ; 117(4): 321-32, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25966710

RESUMO

RATIONALE: Oxidative stress is an important contributing factor in several human pathologies ranging from atherosclerosis to cancer progression; however, the mechanisms underlying tissue protection from oxidation products are poorly understood. Oxidation of membrane phospholipids, containing the polyunsaturated fatty acid docosahexaenoic acid, results in the accumulation of an end product, 2-(ω-carboxyethyl)pyrrole (CEP), which was shown to have proangiogenic and proinflammatory functions. Although CEP is continuously accumulated during chronic processes, such as tumor progression and atherosclerosis, its level during wound healing return to normal when the wound is healed, suggesting the existence of a specific clearance mechanism. OBJECTIVE: To identify the cellular and molecular mechanism for CEP clearance. METHODS AND RESULTS: Here, we show that macrophages are able to bind, scavenge, and metabolize carboxyethylpyrrole derivatives of proteins but not structurally similar ethylpyrrole derivatives, demonstrating the high specificity of the process. F4/80(hi) and M2-skewed macrophages are much more efficient at CEP binding and scavenging compared with F4/80(lo) and M1-skewed macrophages. Depletion of macrophages leads to increased CEP accumulation in vivo. CEP binding and clearance are dependent on 2 receptors expressed by macrophages, CD36 and toll-like receptor 2. Although knockout of each individual receptor results in diminished CEP clearance, the lack of both receptors almost completely abrogates macrophages' ability to scavenge CEP derivatives of proteins. CONCLUSIONS: Our study demonstrates the mechanisms of recognition, scavenging, and clearance of pathophysiologically active products of lipid oxidation in vivo, thereby contributing to tissue protection against products of oxidative stress.


Assuntos
Antígenos CD36/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneais/metabolismo , Estresse Oxidativo , Pirróis/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Antígenos CD36/deficiência , Antígenos CD36/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Macrófagos Peritoneais/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Fenótipo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Transfecção , Carga Tumoral , Cicatrização
10.
Anal Chem ; 86(2): 1254-62, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24350680

RESUMO

Free radical-induced oxidation of phospholipids contributes significantly to pathologies associated with inflammation and oxidative stress. Detection of covalent interaction between oxidized phospholipids (oxPL) and proteins by LC-MS/MS could provide valuable information about the molecular mechanisms of oxPL effects. However, such studies are very limited because of significant challenges in detection of the comparatively low levels of oxPL-protein adducts in complex biological systems. Current approaches have several limitations, most important of which is the inability to detect protein modifications by naturally occurring oxPL. We now report, for the first time, an enrichment method that can be applied to the global analysis of protein adducts with various naturally occurring oxPL in relevant biological systems. This method exploits intrinsic properties of peptides modified by oxPL, allowing highly efficient enrichment of oxPL-modified peptides from biological samples. Very low levels of oxPL-protein adducts (<2 ppm) were detected using this enrichment method in combination with LC-MS/MS. We applied the method to several model systems, including oxidation of high density lipoprotein (HDL) and interaction of human platelets with a specific oxPL, and demonstrated its extremely high efficiency and productivity. We report multiple new modifications of apolipoproteins in HDL and proteins in human platelets.


Assuntos
Proteínas Sanguíneas/química , Lipoproteínas HDL/química , Peptídeos/análise , Fosfolipídeos/química , Sequência de Aminoácidos , Plaquetas/química , Cromatografia Líquida , Humanos , Dados de Sequência Molecular , Oxirredução , Proteólise , Espectrometria de Massas em Tandem , Tripsina/química
11.
Sci Signal ; 6(287): ra67, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23921086

RESUMO

The intricacy of multiple feedback loops in the pathways downstream of Akt allows this kinase to control multiple cellular processes in the cardiovascular system and precludes inferring consequences of its activation in specific pathological conditions. Akt1, the major Akt isoform in the heart and vasculature, has a protective role in the endothelium during atherosclerosis. However, Akt1 activation may also have detrimental consequences in the cardiovascular system. Mice lacking both the high-density lipoprotein receptor SR-BI (scavenger receptor class B type I) and ApoE (apolipoprotein E), which promotes clearance of remnant lipoproteins, are a model of severe dyslipidemia and spontaneous myocardial infarction. We found that Akt1 was activated in these mice, and this activation correlated with cardiac dysfunction, hypertrophy, and fibrosis; increased infarct area; cholesterol accumulation in macrophages and atherosclerosis; and reduced life span. Akt1 activation was associated with inflammation, oxidative stress, accumulation of oxidized lipids, and increased abundance of CD36, a major sensor of oxidative stress, and these events created a positive feedback loop that exacerbated the consequences of oxidative stress. Genetic deletion of Akt1 in this mouse model resulted in decreased mortality, alleviation of multiple complications of heart disease, and reduced occurrence of spontaneous myocardial infarction. Thus, interference with Akt1 signaling in vivo could be protective and improve survival under dyslipidemic conditions by reducing oxidative stress and responses to oxidized lipids.


Assuntos
Infarto do Miocárdio/enzimologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/genética , Camundongos , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo
12.
Blood ; 122(14): 2491-9, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23896409

RESUMO

Kindlin-2, a widely distributed cytoskeletal protein, has been implicated in integrin activation, and its absence is embryonically lethal in mice. In the present study, we tested whether hemostasis might be perturbed in kindlin-2(+/-) mice. Bleeding time and carotid artery occlusion time were significantly prolonged in kindlin-2(+/-) mice. Whereas plasma concentrations/activities of key coagulation/fibrinolytic proteins and platelet counts and aggregation were similar in wild-type and kindlin-2(+/-) mice, kindlin-2(+/-) endothelial cells (ECs) showed enhanced inhibition of platelet aggregation induced by adenosine 5'-diphosphate (ADP) or low concentrations of other agonists. Cell-surface expression of 2 enzymes involved in ADP/adenosine 5'-monophosphate (AMP) degradation, adenosine triphosphate (ATP) diphosphohydrolase (CD39) and ecto-5'-nucleotidase (CD73) were increased twofold to threefold on kindlin-2(+/-) ECs, leading to enhanced ATP/ADP catabolism and production of adenosine, an inhibitor of platelet aggregation. Trafficking of CD39 and CD73 at the EC surface was altered in kindlin-2(+/-) mice. Mechanistically, this was attributed to direct interaction of kindlin-2 with clathrin heavy chain, thereby controlling endocytosis and recycling of CD39 and CD73. The interaction of kindlin-2 with clathrin was independent of its integrin binding site but still dependent on a site within its F3 subdomain. Thus, kindlin-2 regulates trafficking of EC surface enzymes that control platelet responses and hemostasis.


Assuntos
Plaquetas/metabolismo , Clatrina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Hemostasia/fisiologia , Proteínas Musculares/metabolismo , 5'-Nucleotidase/biossíntese , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Antígenos CD/biossíntese , Apirase/biossíntese , Membrana Celular/metabolismo , Feminino , Citometria de Fluxo , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , Agregação Plaquetária/fisiologia , Transporte Proteico/fisiologia , Ressonância de Plasmônio de Superfície
14.
Circ Res ; 112(1): 103-12, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23071157

RESUMO

RATIONALE: A prothrombotic state and increased platelet reactivity are common in pathophysiological conditions associated with oxidative stress and infections. Such conditions are associated with an appearance of altered-self ligands in circulation that can be recognized by Toll-like receptors (TLRs). Platelets express a number of TLRs, including TLR9; however, the role of TLR in platelet function and thrombosis is poorly understood. OBJECTIVE: To investigate the biological activities of carboxy(alkylpyrrole) protein adducts, an altered-self ligand generated in oxidative stress, on platelet function and thrombosis. METHODS AND RESULTS: In this study we show that carboxy(alkylpyrrole) protein adducts represent novel unconventional ligands for TLR9. Furthermore, using human and murine platelets, we demonstrate that carboxy(alkylpyrrole) protein adducts promote platelet activation, granule secretion, and aggregation in vitro and thrombosis in vivo via the TLR9/MyD88 pathway. Platelet activation by TLR9 ligands induces IRAK1 and AKT phosphorylation, and it is Src kinase-dependent. Physiological platelet agonists act synergistically with TLR9 ligands by inducing TLR9 expression on the platelet surface. CONCLUSIONS: Our study demonstrates that platelet TLR9 is a functional platelet receptor that links oxidative stress, innate immunity, and thrombosis.


Assuntos
Plaquetas/metabolismo , Ativação Plaquetária , Albumina Sérica/metabolismo , Trombose/sangue , Receptor Toll-Like 9/sangue , Animais , Plaquetas/imunologia , Antígenos CD36/deficiência , Antígenos CD36/genética , Linhagem Celular , Modelos Animais de Doenças , Genes Reporter , Humanos , Imunidade Inata , Quinases Associadas a Receptores de Interleucina-1/sangue , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Estresse Oxidativo , Fosfatidilinositol 3-Quinase/sangue , Fosforilação , Agregação Plaquetária , Proteínas Proto-Oncogênicas c-akt/sangue , Receptores Depuradores Classe B/deficiência , Receptores Depuradores Classe B/genética , Transdução de Sinais , Trombose/genética , Trombose/imunologia , Fatores de Tempo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 6 Toll-Like/deficiência , Receptor 6 Toll-Like/genética , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Transfecção , Quinases da Família src/sangue
15.
J Biol Chem ; 287(47): 40012-20, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23012377

RESUMO

Integrin activation on hematopoietic cells is essential for platelet aggregation, leukocyte adhesion, and transmigration through endothelium and extracellular matrix into inflamed tissues. To migrate through matrix, leukocyte integrin adhesion complexes undergo dynamic changes. Here we show that Kindlin-3, a main activator and binding partner of integrins in hematopoietic cells, can be cleaved by calpain in an activation-dependent manner. This calpain-mediated cleavage occurs in platelets and leukocytes as well as in endothelial cells. We determined the calpain I cleavage site in Kindlin-3 at tyrosine 373 in the N-terminal part of Kindlin-3 pleckstrin homology domain. Expression of the calpain-resistant Y373N mutant of Kindlin-3 promotes stronger cell adhesion to extracellular matrix under flow as well as to activated endothelium. In contrast, Y373N mutation in Kindlin-3 hinders cell migration. Mechanistically, calpain-resistant Y373N mutant of Kindlin-3 exhibited an activation-independent association with ß integrin cytoplasm domain. Thus, cleavage of Kindlin-3 by calpain controls the dynamics of integrin-Kindlin-3 interaction and as a result, integrin-dependent adhesion and migration of hematopoietic cells. This represents a novel mechanism regulating reversibility of integrin adhesion complexes in leukocytes, which, in turn, is critical for their successful transmigration through the extracellular matrix.


Assuntos
Calpaína/metabolismo , Movimento Celular/fisiologia , Matriz Extracelular/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucócitos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteólise , Substituição de Aminoácidos , Calpaína/genética , Adesão Celular/fisiologia , Matriz Extracelular/genética , Feminino , Células HEK293 , Células HL-60 , Células-Tronco Hematopoéticas/citologia , Humanos , Integrinas/genética , Integrinas/metabolismo , Células K562 , Leucócitos/citologia , Masculino , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética
16.
Cell Metab ; 15(6): 861-72, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22632897

RESUMO

Akt, a serine-threonine protein kinase, exists as three isoforms. The Akt signaling pathway controls multiple cellular functions in the cardiovascular system, and the atheroprotective endothelial cell-dependent role of Akt1 has been recently demonstrated. The role of Akt3 isoform in cardiovascular pathophysiology is not known. We explored the role of Akt3 in atherosclerosis using mice with a genetic ablation of the Akt3 gene. Using hyperlipidemic ApoE(-/-) mice, we demonstrated a macrophage-dependent, atheroprotective role for Akt3. In vitro experiments demonstrated differential subcellular localization of Akt1 and Akt3 in macrophages and showed that Akt3 specifically inhibits macrophage cholesteryl ester accumulation and foam cell formation, a critical early event in atherogenesis. Mechanistically, Akt3 suppresses foam cell formation by reducing lipoprotein uptake and promoting ACAT-1 degradation via the ubiquitin-proteasome pathway. These studies demonstrate the nonredundant atheroprotective role for Akt3 exerted via the previously unknown link between the Akt signaling pathway and cholesterol metabolism.


Assuntos
Aterosclerose/enzimologia , Células Espumosas/enzimologia , Macrófagos Peritoneais/enzimologia , Proteínas Proto-Oncogênicas c-akt/deficiência , Acetil-CoA C-Acetiltransferase/metabolismo , Animais , Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/etiologia , Células da Medula Óssea/enzimologia , Sobrevivência Celular , Células Cultivadas , Colesterol/biossíntese , Colesterol/sangue , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Feminino , Hiperlipidemias/complicações , Hiperlipidemias/enzimologia , Lipoproteínas/sangue , Lipoproteínas/metabolismo , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Seio Aórtico/patologia , Triglicerídeos/sangue
17.
Nature ; 467(7318): 972-6, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20927103

RESUMO

Reciprocity of inflammation, oxidative stress and neovascularization is emerging as an important mechanism underlying numerous processes from tissue healing and remodelling to cancer progression. Whereas the mechanism of hypoxia-driven angiogenesis is well understood, the link between inflammation-induced oxidation and de novo blood vessel growth remains obscure. Here we show that the end products of lipid oxidation, ω-(2-carboxyethyl)pyrrole (CEP) and other related pyrroles, are generated during inflammation and wound healing and accumulate at high levels in ageing tissues in mice and in highly vascularized tumours in both murine and human melanoma. The molecular patterns of carboxyalkylpyrroles are recognized by Toll-like receptor 2 (TLR2), but not TLR4 or scavenger receptors on endothelial cells, leading to an angiogenic response that is independent of vascular endothelial growth factor. CEP promoted angiogenesis in hindlimb ischaemia and wound healing models through MyD88-dependent TLR2 signalling. Neutralization of endogenous carboxyalkylpyrroles impaired wound healing and tissue revascularization and diminished tumour angiogenesis. Both TLR2 and MyD88 are required for CEP-induced stimulation of Rac1 and endothelial migration. Taken together, these findings establish a new function of TLR2 as a sensor of oxidation-associated molecular patterns, providing a key link connecting inflammation, oxidative stress, innate immunity and angiogenesis.


Assuntos
Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Estresse Oxidativo/fisiologia , Pirróis/metabolismo , Receptor 2 Toll-Like/metabolismo , Envelhecimento/metabolismo , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Linhagem Celular , Movimento Celular , Células Endoteliais/metabolismo , Membro Posterior/metabolismo , Humanos , Imunidade Inata/imunologia , Inflamação/metabolismo , Isquemia/metabolismo , Ligantes , Melanoma/irrigação sanguínea , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Oxirredução , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Propionatos , Pirróis/química , Pirróis/farmacologia , Receptores Depuradores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo
18.
Blood ; 116(11): 1932-41, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20508162

RESUMO

Hypercholesterolemia is associated with increased platelet sensitivity to agonists and a prothrombotic phenotype. Mechanisms of platelet hypersensitivity are poorly understood; however, increased platelet cholesterol levels associated with hypercholesterolemia were proposed as leading to hypersensitivity. Scavenger receptor class B type I (SR-BI) in the liver controls plasma high-density lipoprotein (HDL) levels, and SR-BI-deficient mice display a profound dyslipoproteinemia. SR-BI is also expressed on platelets, and recent studies have suggested a role for SR-BI in platelet function; however, its role in hemostasis is unknown. Our present studies demonstrated that non-bone marrow-derived SR-BI deficiency and the dyslipidemia associated with it lead to platelet hyperreactivity that was mechanistically linked to increased platelet cholesterol content. Platelet-specific deficiency of SR-BI, on the other hand, was associated with resistance to hyperreactivity induced by increased platelet cholesterol content. Intravital thrombosis studies demonstrated that platelet SR-BI deficiency protected mice from prothrombotic phenotype in 2 types of dyslipidemia associated with increased platelet cholesterol content. These novel findings demonstrate that SR-BI plays dual roles in thrombosis and may contribute to acute cardiovascular events in vivo in hypercholesterolemia.


Assuntos
Plaquetas/metabolismo , Dislipidemias/metabolismo , Receptores Depuradores Classe B/metabolismo , Trombose/metabolismo , Difosfato de Adenosina/farmacologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Plaquetas/ultraestrutura , Western Blotting , Colesterol/metabolismo , Venenos de Crotalídeos/farmacologia , Dislipidemias/sangue , Dislipidemias/genética , Feminino , Citometria de Fluxo , Lectinas Tipo C , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Microscopia Eletrônica , Oligopeptídeos/farmacologia , Selectina-P/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptores Depuradores Classe B/genética , Trombose/sangue , Trombose/genética
19.
Nat Med ; 15(3): 313-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19234460

RESUMO

Monogenic deficiency diseases provide unique opportunities to define the contributions of individual molecules to human physiology and to identify pathologies arising from their dysfunction. Here we describe a deficiency disease in two human siblings that presented with severe bleeding, frequent infections and osteopetrosis at an early age. These symptoms are consistent with but more severe than those reported for people with leukocyte adhesion deficiency III (LAD-III). Mechanistically, these symptoms arose from an inability to activate the integrins expressed on hematopoietic cells, including platelets and leukocytes. Immortalized lymphocyte cell lines isolated from the two individuals showed integrin activation defects. Several proteins previously implicated in integrin activation, including Ras-associated protein-1 (RAP1) and calcium and diacylglycerol-regulated guanine nucleotide exchange factor-1 (CALDAG-GEF1), were present and functional in these cell lines. The genetic basis for this disease was traced to a point mutation in the coding region of the KINDLIN3 (official gene symbol FERMT3) gene. When wild-type KINDLIN-3 was expressed in the immortalized lymphocytes, their integrins became responsive to activation signals. These results identify a genetic disease that severely compromises the health of the affected individuals and establish an essential role of KINDLIN-3 in integrin activation in humans. Furthermore, allogeneic bone marrow transplantation was shown to alleviate the symptoms of the disease.


Assuntos
Integrinas/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Mutação Puntual , Transplante de Medula Óssea , Linhagem Celular Transformada , Humanos , Síndrome da Aderência Leucocítica Deficitária/genética , Síndrome da Aderência Leucocítica Deficitária/cirurgia , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética
20.
Blood ; 111(4): 1962-71, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17993610

RESUMO

Numerous studies have reported the presence of oxidatively modified high-density lipoprotein (OxHDL) within the intima of atheromatous plaques as well as in plasma; however, its role in the pathogenesis of thrombotic disease is not established. We now report that OxHDL, but not native HDL, is a potent inhibitor of platelet activation and aggregation induced by physiologic agonists. This antithrombotic effect was concentration and time dependent and positively correlated with the degree of lipoprotein oxidation. Oxidized lipoproteins are known ligands for scavenger receptors type B, CD36 and scavenger receptor B type I (SR-BI), both of which are expressed on platelets. Studies using murine CD36(-/-) or SR-BI(-/-) platelets demonstrated that the antithrombotic activity of OxHDL depends on platelet SR-BI but not CD36. Binding to SR-BI was required since preincubation of human and murine platelets with anti-SR-BI blocking antibody abrogated the inhibitory effect of OxHDL. Agonist-induced aggregation of platelets from endothelial nitric oxide synthase (eNOS)(-/-), Akt-1(-/-), and Akt-2(-/-) mice was inhibited by OxHDL to the same degree as platelets from wild-type (WT) mice, indicating that the OxHDL effect is mediated by a pathway different from the eNOS/Akt pathway. These novel findings suggest that contrary to the prothrombotic activity of oxidized low-density lipoprotein (OxLDL), HDL upon oxidation acquires antithrombotic activity that depends on platelet SR-BI.


Assuntos
Lipoproteínas LDL/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Receptores Depuradores Classe B/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD36/genética , Antígenos CD36/fisiologia , Citometria de Fluxo , Humanos , Lipoproteínas/sangue , Camundongos , Camundongos Knockout , Inibidores da Agregação Plaquetária/farmacologia , Receptores Depuradores Classe B/deficiência , Receptores Depuradores Classe B/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA