Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 38(3): 303-308, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31959954

RESUMO

Monitoring drug-target interactions with methods such as the cellular thermal-shift assay (CETSA) is well established for simple cell systems but remains challenging in vivo. Here we introduce tissue thermal proteome profiling (tissue-TPP), which measures binding of small-molecule drugs to proteins in tissue samples from drug-treated animals by detecting changes in protein thermal stability using quantitative mass spectrometry. We report organ-specific, proteome-wide thermal stability maps and derive target profiles of the non-covalent histone deacetylase inhibitor panobinostat in rat liver, lung, kidney and spleen and of the B-Raf inhibitor vemurafenib in mouse testis. In addition, we devised blood-CETSA and blood-TPP and applied it to measure target and off-target engagement of panobinostat and the BET family inhibitor JQ1 directly in whole blood. Blood-TPP analysis of panobinostat confirmed its binding to known targets and also revealed thermal stabilization of the zinc-finger transcription factor ZNF512. These methods will help to elucidate the mechanisms of drug action in vivo.


Assuntos
Sangue/metabolismo , Proteoma/química , Proteoma/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Azepinas/administração & dosagem , Azepinas/farmacologia , Células Hep G2 , Humanos , Rim/química , Rim/metabolismo , Fígado/química , Fígado/metabolismo , Pulmão/química , Pulmão/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Especificidade de Órgãos , Panobinostat/administração & dosagem , Panobinostat/farmacologia , Estabilidade Proteica , Ratos , Bibliotecas de Moléculas Pequenas/farmacologia , Baço/química , Baço/metabolismo , Testículo/química , Testículo/metabolismo , Termodinâmica , Triazóis/administração & dosagem , Triazóis/farmacologia , Vemurafenib/administração & dosagem , Vemurafenib/farmacologia
2.
ACS Med Chem Lett ; 10(5): 780-785, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31097999

RESUMO

The serine/threonine protein kinase TBK1 (Tank-binding Kinase-1) is a noncanonical member of the IkB kinase (IKK) family. This kinase regulates signaling pathways in innate immunity, oncogenesis, energy homeostasis, autophagy, and neuroinflammation. Herein, we report the discovery and characterization of a novel potent and highly selective TBK1 inhibitor, GSK8612. In cellular assays, this small molecule inhibited toll-like receptor (TLR)3-induced interferon regulatory factor (IRF)3 phosphorylation in Ramos cells and type I interferon (IFN) secretion in primary human mononuclear cells. In THP1 cells, GSK8612 was able to inhibit secretion of interferon beta (IFNß) in response to dsDNA and cGAMP, the natural ligand for STING. GSK8612 is a TBK1 small molecule inhibitor displaying an excellent selectivity profile and therefore represents an ideal probe to further dissect the biology of TBK1 in models of immunity, neuroinflammation, obesity, or cancer.

3.
Nat Commun ; 10(1): 6, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30602778

RESUMO

Myofibroblasts are the key effector cells responsible for excessive extracellular matrix deposition in multiple fibrotic conditions, including idiopathic pulmonary fibrosis (IPF). The PI3K/Akt/mTOR axis has been implicated in fibrosis, with pan-PI3K/mTOR inhibition currently under clinical evaluation in IPF. Here we demonstrate that rapamycin-insensitive mTORC1 signaling via 4E-BP1 is a critical pathway for TGF-ß1 stimulated collagen synthesis in human lung fibroblasts, whereas canonical PI3K/Akt signaling is not required. The importance of mTORC1 signaling was confirmed by CRISPR-Cas9 gene editing in normal and IPF fibroblasts, as well as in lung cancer-associated fibroblasts, dermal fibroblasts and hepatic stellate cells. The inhibitory effect of ATP-competitive mTOR inhibition extended to other matrisome proteins implicated in the development of fibrosis and human disease relevance was demonstrated in live precision-cut IPF lung slices. Our data demonstrate that the mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colágeno/biossíntese , Fibroblastos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfoproteínas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Humanos , Fibrose Pulmonar Idiopática/etiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Sirolimo , Serina-Treonina Quinases TOR/metabolismo
4.
Cell ; 173(1): 260-274.e25, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29551266

RESUMO

Protein degradation plays important roles in biological processes and is tightly regulated. Further, targeted proteolysis is an emerging research tool and therapeutic strategy. However, proteome-wide technologies to investigate the causes and consequences of protein degradation in biological systems are lacking. We developed "multiplexed proteome dynamics profiling" (mPDP), a mass-spectrometry-based approach combining dynamic-SILAC labeling with isobaric mass tagging for multiplexed analysis of protein degradation and synthesis. In three proof-of-concept studies, we uncover different responses induced by the bromodomain inhibitor JQ1 versus a JQ1 proteolysis targeting chimera; we elucidate distinct modes of action of estrogen receptor modulators; and we comprehensively classify HSP90 clients based on their requirement for HSP90 constitutively or during synthesis, demonstrating that constitutive HSP90 clients have lower thermal stability than non-clients, have higher affinity for the chaperone, vary between cell types, and change upon external stimuli. These findings highlight the potential of mPDP to identify dynamically controlled degradation mechanisms in cellular systems.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Proteoma/análise , Proteômica/métodos , Azepinas/química , Azepinas/metabolismo , Azepinas/farmacologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Estradiol/farmacologia , Humanos , Marcação por Isótopo , Células Jurkat , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Espectrometria de Massas em Tandem , Triazóis/química , Triazóis/metabolismo , Triazóis/farmacologia
5.
Nat Commun ; 9(1): 689, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449567

RESUMO

A better understanding of proteostasis in health and disease requires robust methods to determine protein half-lives. Here we improve the precision and accuracy of peptide ion intensity-based quantification, enabling more accurate protein turnover determination in non-dividing cells by dynamic SILAC-based proteomics. This approach allows exact determination of protein half-lives ranging from 10 to >1000 h. We identified 4000-6000 proteins in several non-dividing cell types, corresponding to 9699 unique protein identifications over the entire data set. We observed similar protein half-lives in B-cells, natural killer cells and monocytes, whereas hepatocytes and mouse embryonic neurons show substantial differences. Our data set extends and statistically validates the previous observation that subunits of protein complexes tend to have coherent turnover. Moreover, analysis of different proteasome and nuclear pore complex assemblies suggests that their turnover rate is architecture dependent. These results illustrate that our approach allows investigating protein turnover and its implications in various cell types.


Assuntos
Células/metabolismo , Proteínas/química , Proteínas/metabolismo , Animais , Células/química , Células Cultivadas , Humanos , Espectrometria de Massas , Camundongos , Peptídeos/química , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica
6.
J Med Chem ; 60(13): 5455-5471, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28591512

RESUMO

The availability of high quality probes for specific protein targets is fundamental to the investigation of their function and their validation as therapeutic targets. We report the utilization of a dedicated chemoproteomic assay platform combining affinity enrichment technology with high-resolution protein mass spectrometry to the discovery of a novel nicotinamide isoster, the tetrazoloquinoxaline 41, a highly potent and selective tankyrase inhibitor. We also describe the use of 41 to investigate the biology of tankyrase, revealing the compound induced growth inhibition of a number of tumor derived cell lines, demonstrating the potential of tankyrase inhibitors in oncology.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Quinoxalinas/farmacologia , Tanquirases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Tanquirases/metabolismo
7.
Planta Med ; 83(12-13): 1020-1027, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28403501

RESUMO

Boswellic acids constitute a group of unique pentacyclic triterpene acids from Boswellia serrata with multiple pharmacological activities that confer them anti-inflammatory and anti-tumoral properties. A subgroup of boswellic acids, characterized by an 11-keto group, elevates intracellular Ca2+ concentrations [Ca2+]i and causes moderate aggregation of human platelets. How different BAs and their mixtures in pharmacological preparations affect these parameters in activated platelets has not been addressed, so far. Here, we show that boswellic acids either antagonize or induce Ca2+ mobilization and platelet aggregation depending on defined structural determinants with inductive effects predominating for a B. serrata gum resin extract. 3-O-Acetyl-11-keto-ß-boswellic acid potently suppressed Ca2+ mobilization (IC50 = 6 µM) and aggregation (IC50 = 1 µM) when platelets were activated by collagen or the thromboxane A2 receptor agonist U-46619, but not upon thrombin. In contrast, ß-boswellic acid and 3-O-acetyl-ß-boswellic acid, which lack the 11-keto moiety, were weak inhibitors of agonist-induced platelet responses, but instead they elicited elevation of [Ca2+]i and aggregation of platelets (≥ 3 µM). 11-Keto-ß-boswellic acid, the structural intermediate between 3-O-acetyl-11-keto-ß-boswellic acid and ß-boswellic acid, was essentially inactive independent of the experimental conditions. Together, our study unravels the complex agonizing and antagonizing properties of boswellic acids on human platelets in pharmacologically relevant preparations of B. serrata gum extracts and prompts for careful evaluation of the safety of such extracts as herbal medicine in cardiovascular risk patients.


Assuntos
Anti-Inflamatórios/farmacologia , Boswellia/química , Cálcio/metabolismo , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Anti-Inflamatórios/química , Plaquetas/efeitos dos fármacos , Humanos , Extratos Vegetais/química , Relação Estrutura-Atividade , Triterpenos/química
8.
Cell Transplant ; 21(7): 1443-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22776314

RESUMO

The aim of this study was to evaluate the overexpression of genes central to cell survival and angiogenesis to enhance the function of human late outgrowth endothelial progenitor cells (EPCs) and their utility for infarct recovery. Ischemic myocardial injury creates a hostile microenvironment, which is characterized by hypoxia, oxidative stress, and inflammation. The infarct microenvironment prevents adhesion, survival, and integration of cell transplants that promote neovascularization. EPCs are dysfunctional as a result of risk factors in cardiovascular patients. Protein kinase B (Akt) and heme-oxygenase-1 (HO-1) are intracellular proteins that play an important role in angiogenesis and cell survival. Late outgrowth EPCs transduced ex vivo with Akt and HO-1 demonstrate improved adhesion to extracellular matrix, improved migration toward human cardiomyocytes, and an improved paracrine profile under stress. Enhanced late outgrowth EPCs reduce the tumor necrosis factor-α (TNF-α) burden both in vitro and in vivo, attenuating nuclear factor-κB (NF-κB) activity and promoting cell survival. Akt and HO-1 enhance late outgrowth EPC neovascularization, resulting in improved cardiac performance and reduced negative remodeling after myocardial infarction in nude mice. Alteration of the infarct microenvironment through gene modification of human late outgrowth EPCs enhances the function and integration of transplanted cells for restoration of cardiac function.


Assuntos
Células Endoteliais/citologia , Heme Oxigenase-1/genética , Infarto do Miocárdio/terapia , Proteínas Proto-Oncogênicas c-akt/genética , Células-Tronco/citologia , Animais , Adesão Celular , Movimento Celular , Células Cultivadas , Vasos Coronários/fisiologia , Terapia Genética , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Neovascularização Fisiológica , Fagocitose , Análise Serial de Proteínas , Proteoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo , Remodelação Ventricular
9.
Nat Biotechnol ; 29(3): 255-65, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21258344

RESUMO

The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.


Assuntos
Histona Desacetilases/química , Histona Desacetilases/metabolismo , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos
10.
Curr Med Chem ; 13(28): 3359-69, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17168710

RESUMO

Gum resin extracts of Boswellia species have been traditionally applied in folk medicine for centuries to treat various chronic inflammatory diseases, and experimental data from animal models and studies with human subjects confirmed the potential of B. spec extracts for the treatment of not only inflammation but also of cancer. Analysis of the ingredients of these extracts revealed that the pentacyclic triterpenes boswellic acids (BAs) possess biological activities and appear to be responsible for the respective pharmacological actions. Approaches in order to elucidate the molecular mechanisms underlying the biological effects of BAs identified 5-lipoxygenase, human leukocyte elastase, toposiomerase I and II, as well as IkappaB kinases as molecular targets of BAs. Moreover, it was shown that depending on the cell type and the structure of the BAs, the compounds differentially interfere with signal transduction pathways including Ca(2+/-) and MAPK signaling in various blood cells, related to functional cellular processes important for inflammatory reactions and tumor growth. This review summarizes the biological actions of BAs on the cellular and molecular level and attempts to put the data into perspective of the beneficial effects manifested in animal studies and trials with human subjects related to inflammation and cancer.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Triterpenos/química , Triterpenos/farmacologia , Animais , Humanos , Relação Estrutura-Atividade
11.
Med Chem ; 2(6): 591-5, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17105440

RESUMO

We have recently presented the synthesis of 2-amino-1,4-benzoquinones by nuclear amination of p-hydroquinones with primary aromatic amines using fungal laccases as catalysts. In the present report, a series of selected 2-amino-1,4-benzoquinones was tested for biological activities, such as inhibition of human 5-lipoxygenase and anti-proliferative/anti-neoplastic effects. Compound 9 (2-[4'-(iso-propylphenyl)-amino]-5,6-dimethyl-1,4-benzoquinone) was identified as the most potent aminoquinone derivative, suppressing 5-lipoxygenase in intact human polymorphonuclear leukocytes as well as in crude enzyme preparations in the low micromolar range (IC50 = 6 microM). Structure-activity relationships are discussed. Of interest, the 5-lipoxygenase inhibitory properties of 2-amino-1,4-benzoquinones in intact cells correlated to the anti-neoplastic activities of the compounds in breast and urinary bladder cancer cell lines. Based on these features, bioactive 2-amino-1,4-benzoquinones may possess potential for the pharmacological treatment of diseases associated with elevated 5-lipoxygenase activity, in particular certain types of cancer.


Assuntos
Antineoplásicos/química , Benzoquinonas/farmacologia , Inibidores de Lipoxigenase , Antineoplásicos/farmacologia , Benzoquinonas/química , Sistema Livre de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
12.
J Med Chem ; 49(14): 4327-32, 2006 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-16821792

RESUMO

Compounds that inhibit 5-lipoxygenase (5-LO), the key enzyme in the biosynthesis of leukotrienes (LTs), possess potential for the treatment of inflammatory and allergic diseases as well as of atherosclerosis and cancer. Here we present the design and the synthesis of a series of novel 2-amino-5-hydroxyindoles that potently inhibit isolated human recombinant 5-LO as well as 5-LO in polymorphonuclear leukocytes, exemplified by ethyl 2-[(3-chlorophenyl)amino]-5-hydroxy-1H-indole-3-carboxylate (3n, IC(50) value congruent with 300 nM). Introduction of an aryl/arylethylamino group or 4-arylpiperazin-1-yl residues into position 2 of the 5-hydroxyindoles was essential for biological activity. Whereas the 4-arylpiperazin-1-yl derivatives were more potent in cell-free assays as compared to intact cell test systems, aryl/arylethylamino derivatives inhibited 5-LO activity in intact cells and cell-free assays almost equally well. On the basis of their 5-LO inhibitory properties, these novel 2-amino-5-hydroxyindoles represent potential candidates for the pharmacological intervention with LT-associated diseases.


Assuntos
Aminas/síntese química , Indóis/síntese química , Inibidores de Lipoxigenase , Aminas/química , Aminas/farmacologia , Escherichia coli/enzimologia , Humanos , Técnicas In Vitro , Indóis/química , Indóis/farmacologia , Leucócitos/efeitos dos fármacos , Leucócitos/enzimologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/isolamento & purificação , Estereoisomerismo , Relação Estrutura-Atividade
13.
Br J Pharmacol ; 146(4): 514-24, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16086030

RESUMO

We have recently shown that in polymorphonuclear leukocytes, 11-keto boswellic acids (KBAs) induce Ca2+ mobilisation and activation of mitogen-activated protein kinases (MAPK). Here we addressed the effects of BAs on central signalling pathways in human platelets and on various platelet functions. We found that beta-BA (10 microM), the 11-methylene analogue of KBA, caused a pronounced mobilisation of Ca2+ from internal stores and induced the phosphorylation of p38 MAPK, extracellular signal-regulated kinase (ERK)2, and Akt. These effects of beta-BA were concentration dependent, and the magnitude of the responses was comparable to those obtained after platelet stimulation with thrombin or collagen. Based on inhibitor studies, beta-BA triggers Ca2+ mobilisation via the phospholipase (PL)C/inositol-1,4,5-trisphosphate pathway, and involves Src family kinase signalling. Investigation of platelet functions revealed that beta-BA (> or =10 microM) strongly stimulates the platelet-induced generation of thrombin in an ex-vivo in-vitro model, the liberation of arachidonic acid (AA), and induces platelet aggregation in a Ca2+-dependent manner. In contrast to beta-BA, the 11-keto-BAs (KBA or AKBA) evoke only moderate Ca2+ mobilisation and activate p38 MAPK, but fail to induce phosphorylation of ERK2 or Akt, and do not cause aggregation or significant generation of thrombin. In summary, beta-BA potently induces Ca2+ mobilisation as well as the activation of pivotal protein kinases, and elicits functional platelet responses such as thrombin generation, liberation of AA, and aggregation.


Assuntos
Anti-Inflamatórios/farmacologia , Plaquetas/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Análise de Variância , Anti-Inflamatórios/química , Ácido Araquidônico/metabolismo , Plaquetas/fisiologia , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombina/metabolismo , Fatores de Tempo , Triterpenos/química , Fosfolipases Tipo C/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/metabolismo
14.
Org Biomol Chem ; 3(12): 2282-6, 2005 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-16010362

RESUMO

Propargylhexacarbonyldicobalt complexes with fructopyranose ligands were prepared and investigated for cytotoxicity in the MCF-7 human breast cancer cell line. The antiproliferative effects depended on the presence of isopropylidene protecting groups in the carbohydrate ligand and correlated with the cellular concentration of the complexes. IC(50) values of > 20 microM demonstrated that the fructose derivatives were only moderately active compared to the references auranofin and the aspirin (ASS) derivative [2-acetoxy(2-propynyl)benzoate]hexacarbonyldicobalt (Co-ASS). In continuation of our studies on the mode of action of cobalt-alkyne complexes we studied the influence of the compounds on the formation of 12-HHT (COX-1 product) and 12-HETE (12-LOX product) by human platelets as an indication of the interference in the eicosanoid metabolism, which is discussed as a target system of cytostatics. Co-ASS was an efficient COX-1 inhibitor without LOX inhibitory activity and auranofin inhibited both COX-1 and 12-LOX eicosanoid production. The missing activity of the fructopyranose complexes at the 12-LOX and the only moderate effects at COX-1 indicate that COX/LOX inhibition may be in part responsible for the pharmacological effects of auranofin and Co-ASS but not for those of the fructopyranose complexes.


Assuntos
Alcinos/química , Auranofina/química , Cobalto/química , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/farmacologia , Eicosanoides/metabolismo , Frutose/metabolismo , Inibidores de Ciclo-Oxigenase/metabolismo , Frutose/química , Espectroscopia de Ressonância Magnética , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA