Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem Front ; 11(2): 534-548, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38235273

RESUMO

While platinum-based chemotherapeutic agents have established themselves as indispensable components of anticancer therapy, they are accompanied by a variety of side effects and the rapid occurrence of drug resistance. A promising strategy to address these challenges is the use of platinum(iv) prodrugs, which remain inert until they reach the tumor tissue, thereby mitigating detrimental effects on healthy cells. Typically, platinum drugs are part of combination therapy settings. Consequently, a very elegant strategy is the development of platinum(iv) prodrugs bearing a second, clinically relevant therapeutic in axial position. In the present study, we focused on gemcitabine as an approved antimetabolite, which is highly synergistic with platinum drugs. In addition, to increase plasma half-life and facilitate tumor-specific accumulation, an albumin-binding maleimide moiety was attached. Our investigations revealed that maleimide-cisplatin(iv)-gemcitabine complexes cannot carry sufficient amounts of gemcitabine to induce a significant effect in vivo. Consequently, we designed a carboplatin(iv) analog, that can be applied at much higher doses. Remarkably, this novel analog demonstrated impressive in vivo results, characterized by significant improvements in overall survival. Notably, these encouraging results could also be transferred to an in vivo xenograft model with acquired gemcitabine resistance, indicating the high potential of this approach.

2.
NAR Cancer ; 5(4): zcad057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058548

RESUMO

The therapeutic efficacy of cisplatin and oxaliplatin depends on the balance between the DNA damage induction and the DNA damage response of tumor cells. Based on clinical evidence, oxaliplatin is administered to cisplatin-unresponsive cancers, but the underlying molecular causes for this tumor specificity are not clear. Hence, stratification of patients based on DNA repair profiling is not sufficiently utilized for treatment selection. Using a combination of genetic, transcriptomics and imaging approaches, we identified factors that promote global genome nucleotide excision repair (GG-NER) of DNA-platinum adducts induced by oxaliplatin, but not by cisplatin. We show that oxaliplatin-DNA lesions are a poor substrate for GG-NER initiating factor XPC and that DDB2 and HMGA2 are required for efficient binding of XPC to oxaliplatin lesions and subsequent GG-NER initiation. Loss of DDB2 and HMGA2 therefore leads to hypersensitivity to oxaliplatin but not to cisplatin. As a result, low DDB2 levels in different colon cancer cells are associated with GG-NER deficiency and oxaliplatin hypersensitivity. Finally, we show that colon cancer patients with low DDB2 levels have a better prognosis after oxaliplatin treatment than patients with high DDB2 expression. We therefore propose that DDB2 is a promising predictive marker of oxaliplatin treatment efficiency in colon cancer.

3.
Pharmaceutics ; 15(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839999

RESUMO

For a variety of cancer types, platinum compounds are still among the best treatment options. However, their application is limited by side effects and drug resistance. Consequently, multi-targeted platinum(IV) prodrugs that target specific traits of the malignant tissue are interesting new candidates. Recently, cisPt(PhB)2 was synthesized which, upon reduction in the malignant tissue, releases phenylbutyrate (PhB), a metabolically active fatty acid analog, in addition to cisplatin. In this study, we in-depth investigated the anticancer properties of this new complex in cell culture and in mouse allograft experiments. CisPt(PhB)2 showed a distinctly improved anticancer activity compared to cisplatin as well as to PhB alone and was able to overcome various frequently occurring drug resistance mechanisms. Furthermore, we observed that differences in the cellular fatty acid metabolism and mitochondrial activity distinctly impacted the drug's mode of action. Subsequent analyses revealed that "Warburg-like" cells, which are characterized by deficient mitochondrial function and fatty acid catabolism, are less capable of coping with cisPt(PhB)2 leading to rapid induction of a non-apoptotic form of cell death. Summarizing, cisPt(PhB)2 is a new orally applicable platinum(IV) prodrug with promising activity especially against cisplatin-resistant cancer cells with "Warburg-like" properties.

4.
J Med Chem ; 64(16): 12132-12151, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34403254

RESUMO

Chemotherapy with platinum complexes is essential for clinical anticancer therapy. However, due to side effects and drug resistance, further drug improvement is urgently needed. Herein, we report on triple-action platinum(IV) prodrugs, which, in addition to tumor targeting via maleimide-mediated albumin binding, release the immunomodulatory ligand 1-methyl-d-tryptophan (1-MDT). Unexpectedly, structure-activity relationship analysis showed that the mode of 1-MDT conjugation distinctly impacts the reducibility and thus activation of the prodrugs. This in turn affected ligand release, pharmacokinetic properties, efficiency of immunomodulation, and the anticancer activity in vitro and in a mouse model in vivo. Moreover, we could demonstrate that the design of albumin-targeted multi-modal prodrugs using platinum(IV) is a promising strategy to enhance the cellular uptake of bioactive ligands with low cell permeability (1-MDT) and to improve their selective delivery into the malignant tissue. This will allow tumor-specific anticancer therapy supported by a favorably tuned immune microenvironment.


Assuntos
Antineoplásicos/uso terapêutico , Complexos de Coordenação/uso terapêutico , Fatores Imunológicos/uso terapêutico , Maleimidas/uso terapêutico , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Fatores Imunológicos/síntese química , Fatores Imunológicos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Masculino , Maleimidas/síntese química , Maleimidas/farmacologia , Camundongos Endogâmicos BALB C , Camundongos SCID , Estrutura Molecular , Platina/química , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Relação Estrutura-Atividade , Succinimidas/síntese química , Succinimidas/farmacologia , Succinimidas/uso terapêutico
5.
Drug Resist Updat ; 58: 100778, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403910

RESUMO

Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.


Assuntos
Antineoplásicos , Metaloides , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Metaloides/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
Molecules ; 25(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143435

RESUMO

Tyrosine kinase inhibitors revolutionized cancer therapy but still evoke strong adverse effects that can dramatically reduce patients' quality of life. One possibility to enhance drug safety is the exploitation of prodrug strategies to selectively activate a drug inside the tumor tissue. In this study, we designed a prodrug strategy for the approved c-MET, ALK, and ROS1 tyrosine kinase inhibitor crizotinib. Therefore, a boronic-acid trigger moiety was attached to the 2-aminopyridine group of crizotinib, which is a crucial position for target kinase binding. The influence of the modifications on the c-MET- and ALK-binding ability was investigated by docking studies, and the strongly reduced interactions could be confirmed by cell-free kinase inhibition assay. Furthermore, the newly synthesized compounds were tested for their activation behavior with H2O2 and their stability in cell culture medium and serum. Finally, the biological activity of the prodrugs was investigated in three cancer cell lines and revealed a good correlation between activity and intrinsic H2O2 levels of the cells for prodrug A. Furthermore, the activity of this prodrug was distinctly reduced in a non-malignant, c-MET expressing human lung fibroblast (HLF) cell line.


Assuntos
Crizotinibe/química , Inibidores de Proteínas Quinases/química , Ácidos Borônicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Humanos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estabilidade Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
7.
Inorg Chem ; 58(24): 16676-16688, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31790216

RESUMO

Pt(II) complexes, such as cisplatin and oxaliplatin, are in widespread use as anticancer drugs. Their use is limited by the toxic side effects and the ability of tumors to develop resistance to the drugs. A popular approach to overcome these drawbacks is to use their kinetically inert octahedral Pt(IV) derivatives that act as prodrugs. The most successful Pt(IV) complex in clinical trials to date is satraplatin, cct-[Pt(NH3)(c-hexylamine)Cl2(OAc)2], that upon cellular reduction releases the cytotoxic cis-[Pt(NH3)(c-hexylamine)Cl2]. In an attempt to obtain water-soluble and more effective cytotoxic Pt(IV) complexes, we prepared a series of dual- and triple-action satraplatin analogues, where the equatorial chlorido ligands were replaced with acetates and the axial ligands include innocent and bioactive ligands. Replacement of the chlorides with acetates enhanced the water solubility of the compounds and, with one exception, all of the compounds were very stable in buffer. In general, compounds with one or two axial hydroxido ligands were reduced by ascorbate significantly more quickly than compounds with two axial carboxylates. While replacement of the chlorides with acetates in satraplatin led to a reduction in cytotoxicity, the dual- and triple-action analogues with equatorial acetates had low- to sub-micromolar IC50 values in a panel of eight cancer cells. The triple-action compound cct-[Pt(NH3)(c-hexylamine)(OAc)2(PhB)(DCA)] was active in all cell lines, causing DNA damage that induced cell cycle inhibition and apoptosis. Its good activity against CT26 cells in vitro translated into good in vivo efficacy against the CT26 allograft, an in vivo model with intrinsic satraplatin resistance. This indicates that multiaction Pt(IV) derivatives of diamine dicarboxylates are interesting anticancer drug candidates.

8.
Angew Chem Int Ed Engl ; 58(22): 7464-7469, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30870571

RESUMO

Due to their high kinetic inertness and consequently reduced side reactions with biomolecules, PtIV complexes are considered to define the future of anticancer platinum drugs. The aqueous stability of a series of biscarboxylato PtIV complexes was studied under physiologically relevant conditions. Unexpectedly and in contrast to the current chemical understanding, especially oxaliplatin and satraplatin complexes underwent fast hydrolysis in equatorial position (even in cell culture medium and serum). Notably, the resulting hydrolysis products strongly differ in their reduction kinetics, a crucial parameter for the activation of PtIV drugs, which also changes the anticancer potential of the compounds in cell culture. The discovery that intact PtIV complexes can hydrolyze at equatorial position contradicts the dogma on the general kinetic inertness of PtIV compounds and needs to be considered in the screening and design for novel platinum-based anticancer drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA