Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468692

RESUMO

The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. Since mycobacteria are resource and energy limited under these conditions, it is likely that remodeling has distinct requirements from those of the well-characterized biosynthetic program that operates during unrestricted growth. Unexpectedly, we found that mycomembrane remodeling in nutrient-starved, nonreplicating mycobacteria includes synthesis in addition to turnover. Mycomembrane synthesis under these conditions occurs along the cell periphery, in contrast to the polar assembly of actively growing cells, and both liberates and relies on the nonmammalian disaccharide trehalose. In the absence of trehalose recycling, de novo trehalose synthesis fuels mycomembrane remodeling. However, mycobacteria experience ATP depletion, enhanced respiration, and redox stress, hallmarks of futile cycling and the collateral dysfunction elicited by some bactericidal antibiotics. Inefficient energy metabolism compromises the survival of trehalose recycling mutants in macrophages. Our data suggest that trehalose recycling alleviates the energetic burden of mycomembrane remodeling under stress. Cell envelope recycling pathways are emerging targets for sensitizing resource-limited bacterial pathogens to host and antibiotic pressure.IMPORTANCE The glucose-based disaccharide trehalose is a stress protectant and carbon source in many nonmammalian cells. Mycobacteria are relatively unique in that they use trehalose for an additional, extracytoplasmic purpose: to build their outer "myco" membrane. In these organisms, trehalose connects mycomembrane biosynthesis and turnover to central carbon metabolism. Key to this connection is the retrograde transporter LpqY-SugABC. Unexpectedly, we found that nongrowing mycobacteria synthesize mycomembrane under carbon limitation but do not require LpqY-SugABC. In the absence of trehalose recycling, compensatory anabolism allows mycomembrane biosynthesis to continue. However, this workaround comes at a cost, namely, ATP consumption, increased respiration, and oxidative stress. Strikingly, these phenotypes resemble those elicited by futile cycles and some bactericidal antibiotics. We demonstrate that inefficient energy metabolism attenuates trehalose recycling mutant Mycobacterium tuberculosis in macrophages. Energy-expensive macromolecule biosynthesis triggered in the absence of recycling may be a new paradigm for boosting host activity against bacterial pathogens.


Assuntos
Membrana Celular/metabolismo , Parede Celular/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Trealose/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Fatores Corda/metabolismo , Fatores Corda/farmacologia , Diarilquinolinas/farmacologia , Metabolismo Energético/genética , Galactanos/metabolismo , Galactanos/farmacologia , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Maltose/metabolismo , Maltose/farmacologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Ácidos Micólicos/metabolismo , Ácidos Micólicos/farmacologia , Rifampina/farmacologia , Trealose/farmacologia
2.
Chemistry ; 21(9): 3540-5, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25608020

RESUMO

Naturally occurring antimicrobial peptides (AMPs) are powerful defence tools to tackle pathogenic microbes. However, limited natural production and high synthetic costs in addition to poor selectivity limit large-scale use of AMPs in clinical settings. Here, we present a series of synthetic AMPs (SAMPs) that exhibit highly selective and potent killing of Mycobacterium (minimum inhibitory concentration <20 µg mL(-1)) over E. coli or mammalian cells. These SAMPs are active against rapidly multiplying as well as growth saturated Mycobacterium cultures. These SAMPs are not membrane-lytic in nature, and are readily internalized by Mycobacterium and mammalian cells; whereas in E. coli, the lipopolysaccharide layer inhibits their cellular uptake, and hence, their antibacterial action. Upon internalization, these SAMPs interact with the unprotected genomic DNA of mycobacteria, and impede DNA-dependent processes, leading to bacterial cell death.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Penetradores de Células/síntese química , DNA/química , Escherichia coli/química , Lipopolissacarídeos/química , Mycobacterium/química , Peptídeos/química , Peptídeos/síntese química , Animais , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA