Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Interv Neuroradiol ; : 15910199231169597, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157800

RESUMO

BACKGROUND: Several translational animal models have been described assessing intra-arterial (IA) treatments for malignant gliomas. We describe the first endovascular animal model that allows testing of IA drug delivery as a first-line treatment, which is difficult to do in actual patients. We report a unique protocol for vascular access and IA delivery in the rat model that, unlike prior reports, does not require direct puncture and opening of proximal cerebrovasculature which carries risk of ischemia in the animal brain post-delivery. METHODS: Wistar rats underwent left femoral artery catherization with a Balt Magic 1.2F catheter or Marathon Flow directed 1.5F Microcatheter with an Asahi Chikai 0.008 micro-guidewire which was navigated to the left internal carotid artery under x-ray. 25% mannitol was administered to test blood brain barrier breakdown (BBBB). Additional rats were implanted with C6 glioma cells in the left frontal lobe. C6 Glioma-Implanted Rats (C6GRs) were monitored for overall survival and tumor growth. Tumor volumes from MRI images were calculated utilizing 3D slicer. Additional rats underwent femoral artery catheterization with Bevacizumab, carboplatin, or irinotecan injected into the left internal carotid artery to test feasibility and safety. RESULTS: A successful endovascular access and BBBB protocol was established. BBBB was confirmed with positive Evans blue staining. 10 rats were successfully implanted with C6 gliomas with confirmed growths on MRI. Overall survival was 19.75 ± 2.21 days. 5 rats were utilized for the development of our femoral catheterization protocol and BBBB testing. With regards to IA chemotherapy dosage testing, control rats tolerated targeted 10 mg/kg of bevascizumab, 2.4 mg/kg of carboplatin, and 15 mg/kg of irinotecan IA ICA injections without any complications. CONCLUSIONS: We present the first endovascular IA rat glioma model that allows selective catheterization of the intracranial vasculature and assessment of IA therapies for gliomas without need for access and sacrifice of proximal cerebrovasculature.

2.
Exp Neurol ; 335: 113488, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991933

RESUMO

BACKGROUND: The human myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (huMOG-EAE) model, generates B-cell driven demyelination in mice, making it a suitable multiple sclerosis model to study B cell depletion. OBJECTIVES: We investigated the effect of subcutaneous anti-CD20 antibody treatment on huMOG-EAE gray matter (GM) pathology. METHODS: C57Bl/6, 8-week old mice were immunized with 200 huMOG1-125 and treated with 50 µg/mouse of anti-CD20 antibody (n = 16) or isotype control (n = 16). Serial brain volumetric 9.4 T MRI scans was performed at baseline, 1 and 5 wkPI. Disease severity was measured by clinical disability score (CDS) and performance on rotarod test. RESULTS: Anti-CD20 antibody significantly reduced brain volume loss compared with the isotype control across all timepoints longitudinally in the basal ganglia (p = 0.01), isocortex (p = 0.025) and thalamus (p = 0.023). The CDS was reduced significantly with anti-CD20 antibody vs. the isotype control at 3 (p = 0.003) and 4 (p = 0.03) wkPI, while a trend was observed at 5 (p = 0.057) and 6 (p = 0.086) wkPI. Performance on rotarod was also improved significantly at 3 (p = 0.007) and 5 (p = 0.01) wkPI compared with the isotype control. At cellular level, anti-CD20 therapy suppressed the percentage of proliferative nuclear antigen positive microglia in huMOG-EAE isocortex (p = 0.016). Flow cytometry confirmed that anti-CD20 antibody strongly depleted the CD19-expressing B cell fraction in peripheral blood mononuclear cells, reducing it from 39.7% measured in isotype control to 1.59% in anti-CD20 treated mice (p < 0.001). CONCLUSIONS: Anti-CD20 antibody treatment delayed brain tissue neurodegeneration in GM, and showed clinical benefit on measures of disease severity in huMOG-EAE mice.


Assuntos
Anticorpos/uso terapêutico , Antígenos CD20/imunologia , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Substância Cinzenta/patologia , Glicoproteína Mielina-Oligodendrócito , Animais , Atrofia , Linfócitos B/imunologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Macrófagos/imunologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , Equilíbrio Postural/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos
3.
J Neuroimaging ; 30(6): 769-778, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866329

RESUMO

BACKGROUND AND PURPOSE: Blood-derived monocytes/macrophages can be labeled with ultrasmall superparamagnetic iron oxides (USPIO) at periphery and subsequently migrate into areas of inflammation in the brain. We investigated temporal pattern of migration of peripheral immune cells in Theiler's murine encephalomyelitis virus (TMEV) model of chronic demyelination by USPIO-enhanced imaging. METHODS: Fifteen SJL mice (Envigo, Indianapolis, IN) were injected with TMEV (n = 12) or saline (n = 3) at 7 weeks of age. Brain MRI of 9.4 T was performed at 3 months postinfection (mpi) (the peak of inflammatory phase), at 4, 5, and 7 mpi (throughout neurodegenerative phase) using T2*-weighted gradient echo MRI, and performed 24 hours after USPIO injection. Contrast enhancing lesion (CEL) number and volume were measured and development of brain atrophy was assessed across serial time points. Clinical disability scale and rotarod score assessed disease progression. RESULTS: CEL was detected in a total of eight (66.7%) TMEV-infected animals and none of the Controls. The CEL was present in four (33.3%) TMEV-infected animals at 3 mpi, two (16.7%) at 4 mpi, six (54.5%) at 5 mpi, and four (44.4%) at 7 mpi, respectively. In TMEV-infected animals, the CEL number and volume increased significantly from 3 to 7 mpi (P < .01 for both). The correlation between total CEL number and volume with clinical and MRI outcomes was trending (P < .05). On histopathology analysis, CEL showed increased density of Iba1 staining for microglia activity. CONCLUSIONS: Serial USPIO imaging is a promising biomarker for investigating the effect of therapeutic interventions on monocytes/macrophages and microglia activation and neurodegeneration in TMEV-infected animals.


Assuntos
Encéfalo/diagnóstico por imagem , Doenças Desmielinizantes/diagnóstico por imagem , Inflamação/diagnóstico por imagem , Macrófagos/patologia , Microglia/patologia , Monócitos/patologia , Animais , Encéfalo/imunologia , Encéfalo/patologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Dextranos , Inflamação/imunologia , Inflamação/patologia , Nanopartículas de Magnetita , Camundongos , Camundongos Endogâmicos , Theilovirus/imunologia
4.
Exp Neurol ; 314: 82-90, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30684521

RESUMO

BACKGROUND: Leptomeningeal inflammation, as evidenced by leptomeningeal contrast enhancement (LMCE), is associated to cortical pathology in multiple sclerosis. The temporal pattern of LMCE in experimental autoimmune encephalomyelitis (EAE) myelin oligodendrocyte glycoprotein (MOG) is unknown. OBJECTIVE: To investigate LMCE using serial MRI in the EAE model of MS, and its association with clinical disease progression. To characterize the relationship between LMCE and underlying histological correlates. DESIGN: Thirteen C57BL/6J mice, MOG-immunized (35-55 amino acid) and 8 saline injected animals were assessed at pre-induction and at 3, 6, 10, 20, 27, 32, 45 and 63 days post induction (dPI). LMCE scan was obtained using FLAIR-RARE sequence after post-contrast gadolinium administration on 9.4 T scanner. Brain cryo-sections were assessed for measuring cellular density of Iba1 positive macrophage/microglia at 10 dPI and 32 dPI, and for the presence of T, B and macrophage cells in the meningeal layer at 10 dPI and 63 dPI. RESULTS: All EAE-MOG animals showed presence of LMCE and none of the control mice. The peak signal intensity of LMCE was evidenced at 10dPI in the meninges and decreased through 10-63 dPI. The peak of LMCE was associated with a weight loss starting at 1 week PI and with clinical symptoms starting at 2 weeks PI. Histological analysis of the brain tissue showed a higher density of Iba1 positive microglial cells in the EAE-MOG animals, corresponding to the areas of LMCE. Meninges of EAE mice showed higher density of Iba1 stained macrophage cells relative to saline animals. EAE animals also showed the presence of T and B cells in the meninges which were absent in the saline animals. CONCLUSIONS: LMCE peak intensity in the meninges corresponds to the acute inflammatory phase of EAE-MOG disease progression, and is associated with clinical symptoms and higher inflammatory cell density.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Meninges/patologia , Esclerose Múltipla/patologia , Animais , Linfócitos B/patologia , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Córtex Cerebral/patologia , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Feminino , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/biossíntese , Proteínas dos Microfilamentos/genética , Microglia/metabolismo , Microglia/patologia , Esclerose Múltipla/diagnóstico por imagem , Glicoproteína Mielina-Oligodendrócito/biossíntese , Glicoproteína Mielina-Oligodendrócito/genética , Linfócitos T/patologia , Redução de Peso
5.
Exp Neurol ; 283(Pt B): 489-500, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27001544

RESUMO

Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair.


Assuntos
Transplante de Células/métodos , Doenças Desmielinizantes/cirurgia , Oligodendroglia/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Humanos , Regeneração/fisiologia
6.
Proc Natl Acad Sci U S A ; 111(28): E2885-94, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982138

RESUMO

Human oligodendrocyte progenitor cell (OPC) specification and differentiation occurs slowly and limits the potential for cell-based treatment of demyelinating disease. In this study, using FACS-based isolation and microarray analysis, we identified a set of transcription factors expressed by human primary CD140a(+)O4(+) OPCs relative to CD133(+)CD140a(-) neural stem/progenitor cells (NPCs). Among these, lentiviral overexpression of transcription factors ASCL1, SOX10, and NKX2.2 in NPCs was sufficient to induce Sox10 enhancer activity, OPC mRNA, and protein expression consistent with OPC fate; however, unlike ASCL1 and NKX2.2, only the transcriptome of SOX10-infected NPCs was induced to a human OPC gene expression signature. Furthermore, only SOX10 promoted oligodendrocyte commitment, and did so at quantitatively equivalent levels to native OPCs. In xenografts of shiverer/rag2 animals, SOX10 increased the rate of mature oligodendrocyte differentiation and axon ensheathment. Thus, SOX10 appears to be the principle and rate-limiting regulator of myelinogenic fate from human NPCs.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Elementos Facilitadores Genéticos , Xenoenxertos , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Lentivirus , Camundongos , Células-Tronco Neurais/citologia , Proteínas Nucleares , Oligodendroglia/citologia , Transplante de Células-Tronco , Fatores de Transcrição/genética , Transcriptoma , Transdução Genética
7.
Stem Cells Dev ; 22(15): 2121-31, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23488628

RESUMO

The mechanisms underlying the specification of oligodendrocyte fate from multipotent neural progenitor cells (NPCs) in developing human brain are unknown. In this study, we sought to identify antigens sufficient to distinguish NPCs free from oligodendrocyte progenitor cells (OPCs). We investigated the potential overlap of NPC and OPC antigens using multicolor fluorescence-activated cell sorting (FACS) for CD133/PROM1, A2B5, and CD140a/PDGFαR antigens. Surprisingly, we found that CD133, but not A2B5, was capable of enriching for OLIG2 expression, Sox10 enhancer activity, and oligodendrocyte potential. As a subpopulation of CD133-positive cells expressed CD140a, we asked whether CD133 enriched bone fide NPCs regardless of CD140a expression. We found that CD133(+)CD140a(-) cells were highly enriched for neurosphere initiating cells and were multipotent. Importantly, when analyzed immediately following isolation, CD133(+)CD140a(-) NPCs lacked the capacity to generate oligodendrocytes. In contrast, CD133(+)CD140a(+) cells were OLIG2-expressing OPCs capable of oligodendrocyte differentiation, but formed neurospheres with lower efficiency and were largely restricted to glial fate. Gene expression analysis further confirmed the stem cell nature of CD133(+)CD140a(-) cells. As human CD133(+) cells comprised both NPCs and OPCs, CD133 expression alone cannot be considered a specific marker of the stem cell phenotype, but rather comprises a heterogeneous mix of glial restricted as well as multipotent neural precursors. In contrast, CD133/CD140a-based FACS permits the separation of defined progenitor populations and the study of neural stem and oligodendrocyte fate specification in the human brain.


Assuntos
Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Peptídeos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Antígeno AC133 , Biomarcadores/metabolismo , Separação Celular , Células Cultivadas , Citometria de Fluxo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA